In this note we consider a strictly convex domain of dimension with smooth boundary and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.
@incollection{JEDP_2010____A11_0, author = {Ivanovici, Oana}, title = {Dispersive and {Strichartz} estimates for the wave equation in domains with boundary}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {11}, pages = {1--19}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.68}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.68/} }
TY - JOUR AU - Ivanovici, Oana TI - Dispersive and Strichartz estimates for the wave equation in domains with boundary JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 19 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.68/ DO - 10.5802/jedp.68 LA - en ID - JEDP_2010____A11_0 ER -
%0 Journal Article %A Ivanovici, Oana %T Dispersive and Strichartz estimates for the wave equation in domains with boundary %J Journées équations aux dérivées partielles %D 2010 %P 1-19 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.68/ %R 10.5802/jedp.68 %G en %F JEDP_2010____A11_0
Ivanovici, Oana. Dispersive and Strichartz estimates for the wave equation in domains with boundary. Journées équations aux dérivées partielles (2010), article no. 11, 19 p. doi : 10.5802/jedp.68. http://www.numdam.org/articles/10.5802/jedp.68/
[1] Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire | Numdam | MR
[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | MR | Zbl
[3] Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., Volume 21 (2008) no. 3, pp. 831-845 | MR
[4] The functional calculus, J. London Math. Soc. (2), Volume 52 (1995) no. 1, pp. 166-176 | MR | Zbl
[5] Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., Volume 32 (1977), pp. 17-62 | MR | Zbl
[6] Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994) (Oper. Theory Adv. Appl.), Volume 78, Birkhäuser, Basel, 1995, pp. 153-160 | MR
[7] bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA, 1992 (http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf)
[8] Counter example to Strichartz estimates for the wave equation in domains, 2008 (to appear in Math. Annalen, arXiv:math/0805.2901) | arXiv
[9] Counterexamples to the Strichartz estimates for the wave equation in domains II, 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0903.0048 (arXiv:math/0903.0048) | MR
[10] Square function and heat flow estimates on domains, 2008 (arXiv:math/0812.2733) | arXiv
[11] Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz, Volume 1 (1989) no. 3, pp. 127-159 | MR | Zbl
[12] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | MR | Zbl
[13] Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006 (see http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006____A7_0) | Numdam
[14] On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | MR | Zbl
[15] A variational formulation of Schrödinger-Poisson systems in dimension , Comm. Partial Differential Equations, Volume 18 (1993) no. 7-8, pp. 1125-1147 | MR | Zbl
[16] Whispering-gallery waves, Quantum Electronics, Volume 32 (2002) no. 5, pp. 377-400
[17] A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Numdam | MR | Zbl
[18] On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., Volume 8 (1995) no. 4, pp. 879-916 | MR | Zbl
[19] On the norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007) no. 1, pp. 107-153 | MR | Zbl
[20] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | MR | Zbl
[21] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | MR | Zbl
Cité par Sources :