Weak homotopy equivalences of mapping spaces and Vogt's lemma
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) no. 1, pp. 69-80.
@article{CTGDC_2008__49_1_69_0,
     author = {Golasi\'nski, Marek and Stramaccia, Luciano},
     title = {Weak homotopy equivalences of mapping spaces and {Vogt's} lemma},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {69--80},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {49},
     number = {1},
     year = {2008},
     mrnumber = {2412011},
     zbl = {1153.55007},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2008__49_1_69_0/}
}
TY  - JOUR
AU  - Golasiński, Marek
AU  - Stramaccia, Luciano
TI  - Weak homotopy equivalences of mapping spaces and Vogt's lemma
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2008
SP  - 69
EP  - 80
VL  - 49
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_2008__49_1_69_0/
LA  - en
ID  - CTGDC_2008__49_1_69_0
ER  - 
%0 Journal Article
%A Golasiński, Marek
%A Stramaccia, Luciano
%T Weak homotopy equivalences of mapping spaces and Vogt's lemma
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2008
%P 69-80
%V 49
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_2008__49_1_69_0/
%G en
%F CTGDC_2008__49_1_69_0
Golasiński, Marek; Stramaccia, Luciano. Weak homotopy equivalences of mapping spaces and Vogt's lemma. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) no. 1, pp. 69-80. http://www.numdam.org/item/CTGDC_2008__49_1_69_0/

[1] S.A. Antonyan, Mapping spaces are equivariant absolute extensors, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1981), 22-25. | MR | Zbl

[2] S.A. Antonyan and S. Mardešić, Equivariant shape, Fund. Math. 127 (1987), 213-224. | MR | Zbl

[3] S.A. Antonyan, Retraction properties of an orbit spaces. II (Russian), Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145-146; translation in Russian Math. Surveys 48 (1993), no. 6. 156-157. | MR | Zbl

[4] S.A. Antonyan, A characterization of equivariant absolute extensors and the equivarian Dugundji Theorem, Houston J. Math. Vol 31, No. 2 (2000), 451-462. | MR | Zbl

[5] S.A. Antonyan and E. Elfving, The equivariant homotopy type of G-ANR'S for compact group actions. Dubrovnik VI - Geométrie Topology 2007, http://atlas-conferences.eom/c/a/u/w/64.htm.

[6] R. Brown, Topology, Ellis Horwood (1988). | MR | Zbl

[7] C. Casacuberta and J.L. Rodriguez, On weak honotopy equivalences between mapping spaces, Topology vol. 37, no. 4 (1998), 709-717. | MR | Zbl

[8] J.-M. Cordier and T. Porter, Categorical shape theory, World Scientific (1996).

[9] D. Deleanu and P.J. Hilton, On the categorical shape of functors, Fund. Math. 97 (1977), 157-176. | MR | Zbl

[10] E.D. Dubuc, Kan Extension in Enriched Category Theory, Lecture Notes in Math. 145, Springer-Verlag, Berlin-Heidelberg-New York (1970). | MR | Zbl

[11] J. Dydak and S. Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc. 323(2) (1991), 765-796. | MR | Zbl

[12] J. Dydak and S. Nowak, Function spaces and shape theories, Fund. Math. 171 (2002), 117-154. | EuDML | MR | Zbl

[13] P.H.H. Fantham, E.J. Moore, Groupoid enriched categories and homotopy theory, Canad. J. Math. 3 (1983), 385-416. | MR | Zbl

[14] A. Frei, On categorical shape theory, Cahiers Topologie Géom. Différentialle Catég. 17 (3) (1976), 261-294. | EuDML | Numdam | MR | Zbl

[15] A. Gaszak, The Whitehead theorem in equivariant shape theory, Glasnik Mat. 234 (44) (1989), 417-425. | MR | Zbl

[16] P.S. Gevorgyan, Some questions of equivariant movability, Glasnik Mat. vol. 39 (59) (2004), 185-198. | MR | Zbl

[17] P.J. Higgins, Categories and Groupoids, Van Nostrand Reinhold Math. St., vol. 32 (1971). | MR | Zbl

[18] P.S. Hirschorn, Localization of Model Categories, Mathematical Surveys and Monographs 99, Am. Math. Soc., Providence, RI (2003). | Zbl

[19] R. Lashof, The immersion approach to triangulation and smooothing, Proc. Adv. St. on Alg. Top., Aarhus Universitet (1970). | MR | Zbl

[20] S. Mardešić, Strong Shape and Homology, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg-New York (2000). | MR | Zbl

[21] T. Matumoto, Equivariant CW complexes and shape theory, Tsukuba J. Math. vol. 1 (1989), 157-164. | MR | Zbl

[22] I. Pop, An equivariant shape theory, An. Stint. Univ. "Al. I. Cuza" Iaşi, s. la (1984), 53-67. | MR | Zbl

[23] L. Stramaccia, Groupoids and strong shape, Topology and Appl. 153 (2005), 528-539. | MR | Zbl

[24] L. Stramaccia, 2-Categorical aspect of strong shape, Topology and Appl. 153 (2006), 3007-3018. | MR | Zbl

[25] R. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629. | MR | Zbl

[26] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg, Berlin (1978). | MR | Zbl