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LUCIANO STRAMACCIA
Weak homotopy equivalences of mapping
spaces and Vogt’s lemma
Cahiers de topologie et géométrie différentielle catégoriques, tome
49, no 1 (2008), p. 69-80
<http://www.numdam.org/item?id=CTGDC_2008__49_1_69_0>

© Andrée C. Ehresmann et les auteurs, 2008, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_2008__49_1_69_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CAHIERS DE TOPOLOGIE ET Volume XLIX-1 (2008) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

WEAK HOMOTOPY EQUIVALENCES OF 
MAPPING SPACES AND 

VOGTfS LEMMA 
by Marek GOLASINSKI* andLuciano STRAMACCIA 

RESUME. Dans cet article les auteurs présentent une caracté-
risation des équivalences de forme (au sens de la 'shape theo-
ryf) et de forme forte dans le cadre général d'une Top-catégorie 
C tensorisée et co-tensorisée. Le cas des équivalences de forme 
équivariante est aussi considéré. 

ABSTRACT. In this paper we give characterizations of shape 
and strong shape équivalences in the gênerai setting of a ten-
sored and cotensored Top-category C. The case of equivariant 
shape équivalences is also considered. 

Introduction 
A strong shape équivalence [20] is a map inducing an isomorphism 

in the strong shape category sSh(Top, ANR). It turns out [24] that 
/ : X —> Y is such a map if it gives (by composition) an équivalence 

*The first author would like to thank INDAM for a financial support and the 
Dipartimento di Matematica e Informatica, Universitâ di Perugia, for its hospitality 
during his staying on September 15 - October 15, 2006. 
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fz ' Gd(y, Z) —> Gd(X, Z) between fundamental groupoids, for ail 
Z G Ob ANR. 

J. Dydak and S. Nowak [11] provide a géométrie explanation of 
strong shape theory and give a fairly simple way of introducing the 
strong shape category formally. There, those methods are applied to 
présent a list of équivalent conditions for a map / : X —•> Y of /r-spaces 
(compactly generated HausdorfF spaces) to be a strong shape équiva
lence . 

In [24], among other things, it was pointed ont that the notion of 
strong shape équivalence, with respect to a full subcategory of models 
K Ç Top, is a very gênerai one. while that of homotopy équivalence is 
a specialization to the case K = Top. This is based on the well known 
Vogt's Lemma [25], from which it follows that a continuons map / : 
X —> Y is a homotopy équivalence if and only if it induces équivalences 
fz of track groupoids for ail Z G ObTop. 

In the first part of this note, we give a generalization of the results 
recalled above and characterizing strong shape équivalences in the realm 
of a tensored and cotensored Top-category C, with respect to a full sub
category of models closed under cotensoring with finite CW-complexes. 
The case of shape équivalences follows easily. 

Equivariant shape theory was started in [2] (see also [22] for a finite 
group action) and still many problems concerning it and its strong ver
sion remain open, mostly depending on the nature of the base group, 
see e.g., [4], [5]. In the second part of the paper, we deal with shape 
G-equivalences and strong shape G-equivalences. Using some results 
from [15] and [21], we are able to présent a list of équivalent conditions 
for a G-map to be a shape G-equivalence, provided G is a finite group. 
In the case G is a compact group and H < G is closed normal sub-
group, we follow [2] and [3] to deal with G///-expansions and shape 
G///-équivalences as well. 

We also conjecture that an ANRc-expansion X —> X_ of a normal G-
space X yields ANR-expansions XH —> X_H of the fixed point subspaces 
XH for any closed subgroup H < G. We point out that by [21], this 
holds provided G is finite. 
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1 Shape équivalences. 

Throughout this paper Top dénotes the category of ail compactly 
gênerated topological spaces and continuous maps. Let C be a tensored 
and cotensored Top-category in the sensé of [10] (see also [18]). Hence, 
for any objects X G Ob Top and G G Ob C there are a tensor object 
X <g) G and a cotensor object Cx in C. 

Tensoring with the unit interval / gives a cylinder / ® G, for every 
G G Ob C. Consequently one obtains in C a homotopy relation between 
morphisms and, moreover. one gets the notions of homotopy équivalence, 
Hurewicz cofibration (fibration) and so on. We write / ~H 5 for a 
homotopy H : I ® C —> C joining the morphisms / , # : C —> C and 
[G, C] for the set of ail homotopy classes of morphisms from G to C in 
C. 7r(G, G7) will dénote the fundamental groupoid (called also the track 
groupoid, see e.g., [6],) of the topological space C(G, C) of morphisms 
from G to G'. 

Given a category C, let {C, Set} be the category of functors from C 
to the category of sets and the natural transformations between them. 
If (C,P) is a pair of catégories with E : P c-^ C the inclusion functor, 
then the usual Yoneda embedding Yp : P —> {P, Set} o p has the Kan 
extension 

7 £ : C ^ { P , S e t } ° P , 

defined by 7 E ( C ) = C(C, E( - ) ) : P -> Set for every C € Ob C. Recall, 
see [9] or [14], that the shape category Sh(C, P) of the pair (C, P) is the 
full image of 7 E : C —> {P ,Set} o p , as described by the commutative 
diagram 

7 E 
C {P, Set}°P 

S h ( C P ) , 
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where the shape functor Sh is the identity on objects and ^E is fully 
faithful. Hence, the objects of Sh(C, P) are those of C and the mor
phisms can be described by 

Sh(C,C ,) = Na t (C(C ,
1 E( - ) ) ,C(C ,E( - ) ) , 

where Nat means the class of natural transformations. 

Let now (C,P) be a pair of catégories, where C is a tensored and 
cotensored Top-category. A morphism / : C —> G' in C is called: 

(1) a shape équivalence for the pair (C,P) if it fulfils the following 
properties: 

(i) for each morphism g : G —> P, P G ObP , there is a morphism 
h : C —» P such that fto/~j; 

(h) if hQ, /M : G' —> P, P G ObP , are such that hQof~hiof then 
h0 ^ /ii-

(2) / : G —> C is a strong shape équivalence the pair (C,P) if, in 
addition to (i), the following strengthened form of (ii) holds: 

(ii)* given h0, hx : C -> P, P G ObP , with /i0 o f ~F hx o f for a 
homotopy P : / ® G —> P, there is a homotopy Ff \ I ® C -+ P with 
ft0 ~ F ' /i! and such that P7 o (/ ® f) ~ P (rel {0,1} ® G). 

It is clear that any strong shape équivalence is a shape équivalence. 

Those given above are the classical définitions for shape and strong 
shape équivalences of topological spaces, see e.g., [20], wrhen C = Top 
and P = A N R is the full subcategory of absolute neighbourhood re
tracts. In [12] a map of spaces was defined to be a strong shape équiv
alence whenever the induced map /* : C(Y\Z) —> C(X,Z) is a weak 
homotopy équivalence, for ail Z G Ob ANR, and one of the main results 
there was to show that such a définition is équivalent to the classical 
one. 

Recall [19] that a strong homotopy équivalence is a quadruple 
(/, g, H, K) where / : X —> Y, g : Y —• X are maps and H : g o / ~ 
lx , K : / o g ~ \Y are homotopies with foH^Ko(fxl) rel X x di 
and H o (g x 1) ~ g o K rel Y x di. Vogt's Lemma (see [25] and also 
[8, Proposition (1.14)]) asserts that every homotopy équivalence can be 
made in a strong one. In particular, a map / : X —> Y is a homotopy 
équivalence iff it induces, for every space Z G ObTop, an équivalence 
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of track groupoids /£ : TT(Y,Z) —> 7r(X, Z). In [23] it was pointed out 
that conditions (i) and (ii)* for a continuons map / : G —> C amount 
to the fact that / induces an équivalence / | : 7r(Y, Z) —•> n(X,Z), for 
ail Z G Ob ANR. Hence, the concept of strong shape équivalence is a 
relativization of that of homotopy équivalence. 

Let us assume that (C,P) is a pair of catégories, where C is a 
tensored and cotensored Top-category with the further property that 
every morphism / : C —> C in C has a factorization 

/ c, 

where i is a Hurewicz fibration and q a homotopy équivalence. 
The following theorem contains a strong shape analogue of Vogt's 

lemma and furthermore, a categorical version of the main resuit of [12]. 

Theorem 1.1. Let (C,P) be as above, with P closed under cotensors 
with finite CW-complexes, that is P® G ObP for every finite CW-
complex Q and P G O b P . Then, for a morphism f : G —» C in C the 
following are équivalent: 

(1) / : G —> C in C is a strong shape équivalence; 
(2) for any P G ObP7 the induced continuous map f* : C ( C , P) —> 

C(G, P) is a weak homotopy équivalence; 
(3) for any CW-complex Q, the induced morphism Q® f : Q<S>C —> 

Q ®C is a shape équivalence; 
(4) for ail P G ObP, the induced functor /* : TT(G', P) -> TT(G, P) 

of track groupoids is an équivalence of groupoids; 
(5) for any P G ObP and any a : C —* P the induced homomor-

phism 7Ti(/*) : 7Ti(C(G/, P ) , a ) —* TTI(C(G, P) , / o a) of fundamental 
groups is surjective. 

Proof. (2) «=> (3): Let P G ObP. Then, by the Whitehead 
theorem, see e.g., [26, (7.17) Theorem], the continuous map /* : 
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C(G' ,P) —* C(C, P) is a weak équivalence if and only if the induced 
map [Q, C(G', P)] —• [Q, C(G, P)] is a bijection for every GW-complex 
Q. By adjointness, we dérive that [Q, ®C", P] —• [Q, ®C, P] is a bijec
tion for ail P G ObP . Consequently, Q (g) / : Q (g) G —• Q ® C is a 
shape équivalence for any GVK-complex Q. 

It is easy to see that (1) <=> (4). By means of [24, Lemma 1.1 and 
Lemma 1.2], (4) <=> (5) is a conséquence of the so-called Whitehead 
Lemma [13, 17]. 

(1) ==> (2): For any n > 0, let S" be the n-th sphère with 
an extra disjoint point. Since the cotensor Ps+ G ObP, for ev
ery P G ObP , the induced map [C',PS-] -* [C,PS+] is a bijec
tion for every P G ObP. By means of adjointness, we dérive that 
[S£,P(C",P)j -+ [§*,P(G,P)] is a bijection for every P G ObP . By 
(1) «=> (5), for ail P G O b P and a : G' —• P the induced homomor-
phism TTI(/*) : 7Ti(C(C",P),a) -» 7 ^ ( 0 ( ^ P), / o a) of fundamental 
groups is an isomorphism. Thus, by virtue of [7], we deduce that the 
induced continuous map /* : C(G', P) —* C(G, P) is a weak homotopy 
équivalence for ail P G ObP . 

(2) = > (1): Given a morphism / : G —> C , consider its factorization 
f = qoi, where i : C —> C" is a Hurewicz cofibration and q : G" —> G' a 
homotopy équivalence. Since g : G" —> G' is a strong shape équivalence 
then it suffices to show that i : G —> C" is a strong shape équivalence. 
The induced continuous map /* : C(G', P) —> C(G, P) is a weak homo
topy équivalence, so is i* : C(G", P) - • C(G, P) for ail P G ObP . But 
z* : C(G", P) —> C(G, P) is a Hurewicz fibration in Top, so it is a trivial 
Serre fibration in Top, for ail P G O b P . Then, by the commutativity 
of the diagram, 

C(G",P) 

* - C(G,P) 

for any morphism a : G —> P and P G ObP , there is a /3 : G" —• P 
such that a = 0 oi. 

Let now /3i, /¾ : G" -> P be morphisms in P and F : / ® G" -> P a 
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homotopy joining iopi and io/32. By adjointness we get the continuous 
induced maps P0 : {0,1} -> P(C" ,P) and F : / -> P(G",P) . Since 
?* : C(G",P) -+ C(C.P) is a trivial Serre fibration in Top, by the 
commutativity of the diagram, 

{0,1} C(G",P) 

+ C(G,P) 

there is a continuous map G : / —• P(G",P) such that i* o G = F 
and the restriction G |{o,i}= ^o- Consequently, again by adjointness, 
we dérive a homotopy G \ I ® C" —* P joining /3i,/32 and such that 
F = G o (I <g> f) and the proof is complète. 

• 

2 Equivariant shape équivalences. 

Let G be a topological group. Then, the category TopG of ail 
compactly generated topological G-spaces (and continuous G-maps) 
is a tensored and cotensored Top-category. For X G ObTop and 
C G Ob Top G , the tensor X ® C is given by the product X x G and the 
contensor Cx by the mapping space with the usual G-action on X x G 
and Cx. In particular, for G = E, the trivial group we get that the 
category Top is a tensored and cotensored Top-category. 

Write OG be the category of canonical orbits for a topological group 
G. Its objects are given by the cosets G/H (with the usual G-action) for 
any closed subgroup H < G; morphisms G/H —> G/K are represented 
by G-maps. 

Then, the category OG -Top of ail contravariant functors OG —> 
Top is also a tensored and cotensored Top-category, where tensor and 
cotensor objects are defined componentwise. 
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Remark 2 .1 . (1) Given a compact topological group G, consider the 
full subcategory P = A N R G of TopG of ail G-absolute neighbor-
hood retracts. By [1], we get P s î G O b A N R G for ail n > 0 pro
vided P G Ob ANR G . Hence, Theorem 1.1 for the pair of catégories 
(TopG, ANR G ) holds. In particular, for G = E, the trivial group we 
get the resuit shown in [24] also for the pair of catégories (Top, ANR) , 
where A N R is the the full subcategory of Top of ail absolute neighbor-
hood retracts. 

(2) Let now G be any topological group and take the full subcate
gory O G - A N R of C^-Top of ail contravariant functors OG -> ANR. 
Again by [1], we get that P§" G O b O G - A N R for ail n > 0 pro
vided P G Ob(9G-ANR. Hence, Theorem 1.1 for the pair of catégories 
(TopG,C>G-ANR) holds as well. 

(3) Let pro-TopG be the category of pro-objects over Top G and take 
its full subcategory pro-ANRG. Then, it is obvious that Theorem 1.1 
is also valid for the pair of catégories (pro-TopG,pro-ANRG). 

Given a topological group G, a closed subgroup H < G and a 
G-space X, write XH for the fixed point subspace of X. A (strong) 
shape équivalence in the category TopG is called a (strong) shape G-
equivalence. 

If X is a G-space, write XH for restriction of X to a subgroup 
H < G. In case the group G is finite and X is a normal G-space then, 
by [21L Theorem 2], for any subgroup H < G, its Cech G-expansion 
X -> CG(X) yields an expansion XH -> C(X)H. Furthermore, by [21, 
Lemma 4.1], one can easily dérive that the restricted Cech G-expansion 
XH —• CG(X)H is an //"-expansion of the #-space XH. Hence, by virtue 
of [15] and [21], we can state: 

Proposi t ion 2.2. Let G be finite group and f : X -> Y a G-map of 
normal G-spaces. Then, the following are équivalent: 

(1) / : X —• Y is a shape G-équivalence ; 
(2) for any subgroup H < G. the map fH : XH - • YH is a shape 

équivalence; 
(3) for any subgroup H < G, the restricted H-map fH : XH -> YH 

is a shape H-équivalence; 
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(4) for any subgroup H < G and k > 0, the induced maps 
7Vk(C(X)H) —> 7Tk{C(Y)H) of homotopy pro-groups is an isomorphism. 

Now, given a topological group G and a closed normal subgroup 
H < G, write X/H for the quotient G///-space. In the light of [3], 
P/H G O b A N R G provided P G ObANR G . If H < G is also a 
compact subgroup then we can easily show that P/H G ObANRG/// 
as well. 

Proposition 2.3. Let G be a compact (Hausdorff) group and H < G a 
closed normal subgroup. 

(1) If X —» J[_is an ANRG-expansion of a G-space X then X/H —> 
2L/H is an ANRG///-expansion of the G/H-space X/H. 

(2) / / a G-map f : X —> Y is a strong shape G-equivalence for 
the pair ( T O P G , A N R G ) then the induced G/H-map f /H : X/H —> 
Y/H of quotients is also a strong shape G/H-équivalences for the pair 
(Top G / / / ,ANR G / / / ) . 

Proof. (1) Given an ANRc-expansion X —• X_ of a G-space X and 
a closed normal subgroup H < G, we get by the above that X_/H 
is an inverse System in A N R G / / / . Then, one can easily check that 
X/H —• X / / / is an ANRG///-expansion of the G///-space X / i / as 
well. 

(2) Certainly, it follows directly from (1) that f/H : X/H -> F / / / 
is a shape G///-equivalence. Nevertheless, we présent below a direct 
proof of (2). 

(i) Any G/if-map a : X/H -> P for P G ObANRG / / / yields a 
G-map â : X -^ P. Hence, there is a G-map (3 : Y -» P and a G-
homotopy / o ^ ~ a. Those lead to a G///-map (3 . Y —> P and a 
G///-homotopy / / / / o /3 ~ a. 

(ii) Let /?0, /?i : ^ / / / -> P be G///-maps with ^o o / / / / ~ F /3i o f/H 
for a G///-homotop_y P : / x X/H - • P and P G ObANRG///. Then, 
we get G-maps /30, /?i : V -> P and a G-homotopy F . I x X -^ P with 
Â o / ^ f t o / . Hence, there is a G-homotopy F' . I ® X -* P with 
/¾ ^F> À and such that P ' o (/ x / ) ~ P (rel {0,1} x X). Those yield 
a G///-homotopy Ff : I x X/H -> P with /30 ^ F ' /¾ and such that 
P ' o (/ x / / / / ) ~ P (rel {0,1} x X/H) and the proof is complète. • 
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When G is a finite group then, in light of [22], any object of A N R G 

lias the G-homotopy type of a G-CW complex and vice versa. By [21, 
Lemma 4.1], any open covering of a G-space X admits an equivariant 
refinement. Conséquently, by [21, Theorem 2], for any subgroup H < G 
and a normal G-space X, the Cech G-expansion X —> CG(X) yields an 
expansion XH -> C{X)H. 

Let G be a compact (Hausdorff) group. Then, by [2], any G-space 
X admits a ANRG-expansion X —• 2C This means that the full 
subcategory [ A N G G ] of [TopG] which consists of spaces having the 
G-homotopy type of A N R G ' S , is dense in [TopG]. Furthermore, by 
[16] we get XH G O b A N R for any closed subgroup H < G provided 
X G ObANRG- We close the paper with the following: 

Conjecture 2.4. Let now G be a compact (Hausdorff) group and X a 
normal G-space. If X —• X_ is an ANRG-expansion of X then XH —-> 
X_H is an ANR-expansion of XH, for any closed subgroup H < G. 

For a finite group G, generalizations of some results on equivariant ho
motopy theory presented in [22] show that the equivariant shape theory 
can afford new problems involving G-spaces. Therefore, an affirmative 
solution of the conjecture above should throw a new light on another 
path between G-spaces and their fixed point subspaces associated with 
closed subgroups H < G. 
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