Optimal control of fractional semilinear PDEs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 5.

In this paper, we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2s with s ∈ (0, 1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019003
Classification : 49J20, 49K20, 35S15, 26A33, 65R20, 65N30
Mots-clés : Integral and spectral fractional operators, semilinear PDEs, semilinear optimal control problems, optimal growth condition, regularity of weak solutions
@article{COCV_2020__26_1_A5_0,
     author = {Antil, Harbir and Warma, Mahamadi},
     title = {Optimal control of fractional semilinear {PDEs}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019003},
     mrnumber = {4055455},
     zbl = {1439.49008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019003/}
}
TY  - JOUR
AU  - Antil, Harbir
AU  - Warma, Mahamadi
TI  - Optimal control of fractional semilinear PDEs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019003/
DO  - 10.1051/cocv/2019003
LA  - en
ID  - COCV_2020__26_1_A5_0
ER  - 
%0 Journal Article
%A Antil, Harbir
%A Warma, Mahamadi
%T Optimal control of fractional semilinear PDEs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019003/
%R 10.1051/cocv/2019003
%G en
%F COCV_2020__26_1_A5_0
Antil, Harbir; Warma, Mahamadi. Optimal control of fractional semilinear PDEs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 5. doi : 10.1051/cocv/2019003. http://www.numdam.org/articles/10.1051/cocv/2019003/

[1] N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 (2017) 439–467. | DOI | Numdam | MR | Zbl

[2] G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. | DOI | MR | Zbl

[3] R.A. Adams, Sobolev spaces, in Vol. 65 of Pure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). | MR | Zbl

[4] H. Antil and S. Bartels, Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math. 17 (2017) 661–678. | DOI | MR | Zbl

[5] H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs. Inverse Problems 35 (2019) 084003. | DOI | MR | Zbl

[6] H. Antil, R.H. Nochetto and P. Sodré, Optimal control of a free boundary problem: analysis with second-order sufficient conditions. SIAM J. Control Optim. 52 (2014) 2771–2799. | DOI | MR | Zbl

[7] H. Antil, J. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization. Commun. Math. Sci. 16 (2018) 1395–1426. | DOI | MR | Zbl

[8] H. Antil, J. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: M2AN 51 (2017) 2049–2067. | DOI | Numdam | MR | Zbl

[9] H. Antil and C.N. Rautenberg, Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications. Preprint (2018). | arXiv | MR

[10] H. Antil and M. Warma, Optimal control of the coefficient for fractional p-Laplace equation: approximation and convergence. RIMS Kôkyûroku 2090 (2018) 102–116.

[11] H. Antil and M. Warma, Optimal control of the coefficient for the regional fractional p-Laplace equation: approximation and convergence. Math. Cont. Relat. Fields 9 (2019) 1–38. | DOI | MR | Zbl

[12] W. Arendt, A.F.M. Ter Elst and M. Warma, Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Commun. Part. Differ. Equ. 43 (2018) 1–24. | DOI | MR

[13] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. MOS-SIAM Series on Optimization, in Applications to PDEs and optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition (2014). | MR | Zbl

[14] U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17 (2017) 387–409. | DOI | MR | Zbl

[15] M. Biegert and M. Warma, Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on “bad”domains. Adv. Differ. Equ. 15 (2010) 893–924. | MR | Zbl

[16] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer Science & Business Media (2013). | MR | Zbl

[17] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. Royal Soc. Interf. 11 (2014) 20140352. | DOI

[18] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

[19] L.A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12 (2010) 1151–1179. | DOI | MR | Zbl

[20] L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 767–807. | DOI | Numdam | MR | Zbl

[21] R.S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species. Proc. Roy. Soc. Edinburgh Sect. A: Math.137 (2007) 497–518. | DOI | MR | Zbl

[22] E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim. 22 (2012) 795–820. | DOI | MR | Zbl

[23] E. Casas and K. Kunisch, Analysis of optimal control problems of semilinear elliptic equations by bv-functions. Set-Valued Variat. Anal. 27 (2019) 355–379. | DOI | MR | Zbl

[24] E. Casas and F. Tröltzsch, A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53 (2012) 173–206. | DOI | MR | Zbl

[25] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | DOI | MR | Zbl

[26] W. Chen, A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos 16 (2006) 023126. | DOI | Zbl

[27] F.H. Clarke, Optimization and nonsmooth analysis, in Vol. 5 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition (1990). | MR | Zbl

[28] P. Constantin, A.J. Majda and E.G Tabak, Singular front formation in a model for quasigeostrophic flow. Phys. Fluids 6 (1994) 9–11. | DOI | MR | Zbl

[29] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

[30] M. Doman, Weak uniform rotundity of Orlicz sequence spaces. Math. Nachr. 162 (1993) 145–151. | DOI | MR | Zbl

[31] A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31 (1995) 297–326. | DOI | MR | Zbl

[32] A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40 (2015) 235–253. | DOI | MR | Zbl

[33] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, 24. Pitman, Boston, MA (1985). | MR | Zbl

[34] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268 (2015) 478–528. | DOI | MR | Zbl

[35] G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems. Math. Nachr. 289 (2016) 831–844. | DOI | MR | Zbl

[36] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR | Zbl

[37] J.-L. Lions and E. Magenes, in Vol. I of Non-homogeneous Boundary Value Problems and Applications. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl

[38] L. Nirenberg, Topics in Nonlinear Functional Analysis. In Vol. 6. American Mathematical Soc. (1974). | MR | Zbl

[39] J. Pfefferer, Numerical analysis for elliptic Neumann boundary control problems on polygonal domains. Ph.D. thesis, Universitätsbibliothek der Universität der Bundeswehr München (2014).

[40] M.M. Rao and Z. D. Ren, Applications of Orlicz Spaces, in Vol. 250 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (2002). | MR | Zbl

[41] X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian. Calc. Var. Partial Differ. Equ. 50 (2014) 723–750. | DOI | MR | Zbl

[42] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 831–855. | DOI | MR | Zbl

[43] P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Part. Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl

[44] F. Tröltzsch, Optimal Control of Partial Differential Equations, in Vol. 112 of Graduate Studies in Mathematics. Theory, methods and applications, Translated fromthe 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[45] G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J. Murphy, P.A. Prince and H.E. Stanley, Lévy flight search patterns of wandering albatrosses. Nature 381 (1996) 413. | DOI

[46] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potent. Anal. 42 (2015) 499–547. | DOI | MR | Zbl

[47] M. Warma, The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian. Nonlin. Differ. Equ. Appl. 23 (2016) 1. | DOI | MR | Zbl

Cité par Sources :

The work of the first author is partially supported by NSF grants DMS-1521590 and DMS-1818772 and Air Force Office of Scientific Research under Award No. FA9550-19-1-0036. The work of the second author is partially supported by the Air Force Office of Scientific Research under Award No. FA9550-18-1-0242.