Let be a uniformly elliptic operator in divergence form in a bounded domain Ω. We consider the fractional nonlocal equations
Mots clés : Fractional Laplacian, Fractional divergence form elliptic operator, Schauder estimates, Fundamental solution, Semigroup language, Extension problem
@article{AIHPC_2016__33_3_767_0, author = {Caffarelli, Luis A. and Stinga, Pablo Ra\'ul}, title = {Fractional elliptic equations, {Caccioppoli} estimates and regularity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {767--807}, publisher = {Elsevier}, volume = {33}, number = {3}, year = {2016}, doi = {10.1016/j.anihpc.2015.01.004}, zbl = {1381.35211}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.004/} }
TY - JOUR AU - Caffarelli, Luis A. AU - Stinga, Pablo Raúl TI - Fractional elliptic equations, Caccioppoli estimates and regularity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 767 EP - 807 VL - 33 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.004/ DO - 10.1016/j.anihpc.2015.01.004 LA - en ID - AIHPC_2016__33_3_767_0 ER -
%0 Journal Article %A Caffarelli, Luis A. %A Stinga, Pablo Raúl %T Fractional elliptic equations, Caccioppoli estimates and regularity %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 767-807 %V 33 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.004/ %R 10.1016/j.anihpc.2015.01.004 %G en %F AIHPC_2016__33_3_767_0
Caffarelli, Luis A.; Stinga, Pablo Raúl. Fractional elliptic equations, Caccioppoli estimates and regularity. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 767-807. doi : 10.1016/j.anihpc.2015.01.004. http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.004/
[1] The two-phase fractional obstacle problem, 2014 (27 pp) | arXiv
[2] Bounds for the fundamental solution of a parabolic equation, Bull. Am. Math. Soc., Volume 73 (1967), pp. 890–896 | DOI | Zbl
[3] Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math., Volume vol. 215, Dekker, New York (2001), pp. 15–32 (Bad Herrenalb, 1998) | Zbl
[4] Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., Volume 224 (2010), pp. 2052–2093 | DOI | Zbl
[5] Elliptic second order equations, Rend. Semin. Mat. Fis. Milano, Volume 58 (1988), pp. 253–284 | DOI | Zbl
[6] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., Volume 171 (2008), pp. 425–461 | DOI | Zbl
[7] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245–1260 | DOI | Zbl
[8] Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Super. Pisa (3), Volume 18 (1964), pp. 137–160 | Numdam | Zbl
[9] Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Partial Differ. Equ., Volume 36 (2011), pp. 1353–1384 | DOI | Zbl
[10] Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989 | Zbl
[11] Proceedings of the International Conference on Partial Differential Equations Dedicated to Luigi Amerio on His 70th Birthday, Rend. Semin. Mat. Fis. Milano, Volume vol. 52 (1982), pp. 11–21 (Milan/Como, 1982) | DOI | Zbl
[12] The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), Volume 32 (1982), pp. 151–182 | DOI | Numdam | Zbl
[13] The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., Volume 7 (1982), pp. 77–116 | DOI | Zbl
[14] First passage times for symmetric stable processes in space, Trans. Am. Math. Soc., Volume 101 (1961), pp. 75–90 | DOI | Zbl
[15] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | Zbl
[16] Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math., Volume 268 (2015), pp. 478–528 | DOI | Zbl
[17] Regularity of spectral fractional Dirichlet and Neumann problems, 2014 (12 pp) | arXiv
[18] Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2011 | Zbl
[19] Théorèmes de trace et d'interpolation (I), Ann. Sc. Norm. Super. Pisa (3), Volume 13 (1959), pp. 389–403 | Numdam | Zbl
[20] Problèmes aux Limites Non Homogènes et Applications, vol. 1, Travaux et Recherches Mathématiques, vol. 17, Dunod, Paris, 1968 | Zbl
[21] Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa (3), Volume 17 (1963), pp. 43–77 | Numdam | Zbl
[22] A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math. (2014) (in press, 59 pp) | DOI
[23] Estimates for Dirichlet heat kernels, intrinsic ultracontractivity and expected exit time on Lipschitz domains, Commun. Math. Anal., Volume 15 (2013), pp. 115–130 | Zbl
[24] Fractional Laplacian on the torus, Commun. Contemp. Math. (2015) (in press)
[25] The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., Volume 101 (2014), pp. 275–302 | DOI | Zbl
[26] The heat kernel and its estimates, Probabilistic Approach to Geometry, Adv. Stud. Pure Math., vol. 57, Math. Soc. Japan, Tokyo, 2010, pp. 405–436 | DOI | Zbl
[27] Norms and domains of the complex powers , Am. J. Math., Volume 93 (1971), pp. 299–309 | DOI | Zbl
[28] Interpolation in with boundary conditions, Stud. Math., Volume 44 (1972), pp. 47–60 | DOI | Zbl
[29] Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., Volume 60 (2007), pp. 67–112 | DOI | Zbl
[30] Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, Volume 125 (2003), pp. 578–592 | DOI | Zbl
[31] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970 | Zbl
[32] Fractional powers of second order partial differential operators: extension problem and regularity theory, Universidad Autónoma de Madrid, Spain, 2010 (PhD thesis)
[33] Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 2092–2122 | DOI | Zbl
[34] Fractional semilinear Neumann problems arising from a fractional Keller–Segel model, Calc. Var. Partial Differ. Equ. (2014) (in press, 34 pp) | DOI
[35] Harnack's inequality for fractional nonlocal equations, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 3153–3170 | Zbl
[36] Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000 | Zbl
[37] Smooth functions, Duke Math. J., Volume 12 (1945), pp. 47–76 | DOI | Zbl
Cité par Sources :