Viscosity methods for large deviations estimates of multiscale stochastic processes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 605-637.

We study singular perturbation problems for second order HJB equations in an unbounded setting. The main applications are large deviations estimates for the short maturity asymptotics of stochastic systems affected by a stochastic volatility, where the volatility is modelled by a process evolving at a faster time scale and satisfying some condition implying ergodicity.

DOI : 10.1051/cocv/2017051
Classification : 35XX, 49Lxx, 37Axx
Mots clés : Viscosity solutions, Hamilton−Jacobi−Bellman equations, homogenization and singular perturbations, large deviations, stochastic volatility models
Ghilli, Daria 1

1
@article{COCV_2018__24_2_605_0,
     author = {Ghilli, Daria},
     title = {Viscosity methods for large deviations estimates of multiscale stochastic processes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {605--637},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017051},
     zbl = {1403.35334},
     mrnumber = {3816407},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017051/}
}
TY  - JOUR
AU  - Ghilli, Daria
TI  - Viscosity methods for large deviations estimates of multiscale stochastic processes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 605
EP  - 637
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017051/
DO  - 10.1051/cocv/2017051
LA  - en
ID  - COCV_2018__24_2_605_0
ER  - 
%0 Journal Article
%A Ghilli, Daria
%T Viscosity methods for large deviations estimates of multiscale stochastic processes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 605-637
%V 24
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017051/
%R 10.1051/cocv/2017051
%G en
%F COCV_2018__24_2_605_0
Ghilli, Daria. Viscosity methods for large deviations estimates of multiscale stochastic processes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 605-637. doi : 10.1051/cocv/2017051. http://www.numdam.org/articles/10.1051/cocv/2017051/

[1] O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2001/02) 1159–1188 | DOI | MR | Zbl

[2] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61 | DOI | MR | Zbl

[3] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. In vol. 960 of Memoirs of the American Mathematical Society (2010) vi+77 | MR | Zbl

[4] O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenization for second-order Hamilton−Jacobi equations. J. Differ. Equ. 243 (2007) 349–387 | DOI | MR | Zbl

[5] M. Arisawa and P.-L. Lions, On ergodic stochastic control. Commun. Partial Differ. Equ. 23 (1998) 2187–2217 | DOI | MR | Zbl

[6] M. Bardi, A. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility. Siam J. Financial Math. 1 (2010) 230–265 | DOI | MR | Zbl

[7] M. Bardi, A. Cesaroni and D. Ghilli, Large deviations for some fast stochastic volatility models by viscosity methods. Discrete Contin. Dyn. Syst. A. 35 (2015) 3965–3988 | DOI | MR | Zbl

[8] G. Barles, A weak bernstein method for fully nonlinear elliptic equations. Differ. Integral Equ. 4 (1991) 241–262 | MR | Zbl

[9] G. Barles, C0,α-regularity and estimates for solutions of elliptic and parabolic equations by the Ishii−Lions method. Gakuto International Series, Math. Sci. Appl. 30 (2008) 33–47

[10] G. Barles, A short proof of the C0,α-regularity of viscosity subsolutions for superquadratic viscous Hamilton−Jacobi equations and applications. Nonlinear Anal. 73 (2010) 31–47 | DOI | MR | Zbl

[11] G. Barles, Solutions de viscosité des équations de Hamilton−Jacobi. In Vol. 17 of Math. Appl. Springer Verlag (1994) | MR

[12] G. Barles, H. Ishii and H. Mitake, A new PDE approach to the large time asymptotics of solutions of Hamilton−Jacobi equations. Bull. Math. Sci. 3 (2013) 363–388 | DOI | MR | Zbl

[13] G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton−Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990) 21–44 | DOI | MR | Zbl

[14] G. Barles and P. Souganidis, Space-time periodic solutions and long-time behavior of solutions of quasilinear parabolic equations. SIAM J. Math. Anal. (electronic) 32 (2001) 1311–1323 | DOI | MR | Zbl

[15] A. Bensoussan, Perturbation Methods in Optimal Control, John Wiley and Sons, Montrouge, France (1988) | MR | Zbl

[16] V.S. Borkar and V. Gaitsgory, Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim. 46 (2007) 1562–1577 | DOI | MR | Zbl

[17] I. Capuzzo Dolcetta, F. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Amer. Math. Soc. 362 (2010) 4511–4536 | DOI | MR | Zbl

[18] P. Cardaliaguet, A note on the regularity of solutions of Hamilton−Jacobi equationswith superlinear growth in the gradient variable. ESAIM: COCV 15 (2009) 367–376 | Numdam | MR | Zbl

[19] P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton−Jacobi equationswith superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Equ. 37 (2012) 1668–1688 | DOI | MR | Zbl

[20] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67 | DOI | MR | Zbl

[21] F. Da Lio and O. Ley, Uniqueness results for second order Bellman-Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45 (2006) 74–106 | DOI | MR | Zbl

[22] G. Dal Maso and H. Frankowska, Value functions for Boltza problems with discontinuous lagrangian and Hamilton−Jacobi inequality. ESAIM: COCV 5 (2000) 369–393 | Numdam | MR | Zbl

[23] L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359–375 | DOI | MR | Zbl

[24] L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2 (1985) 1–20 | DOI | Numdam | MR | Zbl

[25] J. Feng, J.-P. Fouque and R. Kumar, Small time asymptotic for fast mean-reverting stochastic volatility models. Ann. Appl. Probab. 22 (2012) 1541–1575 | DOI | MR | Zbl

[26] J. Feng and T.G. Kurtz, Large deviations for stochastic processes. Amer. Math. Soc. Providence, RI (2006) | MR | Zbl

[27] J.-P. Fouque, G. Papanicolaou and K.R. Sircar, Derivatives in financial markets with stochastic volatility. Cambridge university press, Cambridge (2000) | MR | Zbl

[28] D. Ghilli, Some results in nonlinear PDEs: large deviations problems, nonlocal operators and stability for some isoperimetric problems. Ph.D. thesis, Dept. of Mathematics, Univ. of Padua (2016)

[29] R.Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan denRijn, The Netherlands, Germantown, MD (1980) | MR

[30] N. Ichihara, Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type. SIAM J. Control Optim. 49 (2011) 1938–1960 | DOI | MR | Zbl

[31] N. Ichihara and S. Sheu, Large time behavior of solutions of Hamilton−Jacobi−Bellman equations with quadratic nonlinearity in gradient. J. Math. Anal. 45 (2013) 279–306 | MR | Zbl

[32] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83 (1990) 26–78 | DOI | MR | Zbl

[33] H. Kaise and S. Sheu, On the structure of solution of ergodic type Bellman equation related to risk-sensitive control. Ann. Probab. 34 (2006) 284–320 | DOI | MR | Zbl

[34] O. Ley and V. Duc Nguyen Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems. Nonlinear Analysis: Theory, Methods and Applications 130 (2016) 76–101 | DOI | MR | Zbl

[35] P.-L. Lions, Generalized solutions of Hamilton−Jacobi equations. Pitman (Advanced Publishing Program), Boston, Mass. (1982) | MR | Zbl

[36] P.-L. Lions and M. Musiela, Ergodicity of Diffusion Processes. manuscript 2002

[37] P. -L. Lions and P.E. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. Henri Poincaré – Ann. Non Lin. 22 (2005) 667–677 | DOI | Numdam | MR | Zbl

[38] L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics (Boca Raton) 283. Chapman and Hall/, Boca Raton, FL (2007) xxxii+526 | MR | Zbl

[39] E. Pardoux and A. Yu. Veretennikov, On the Poisson equation and diffusion approximation, I. Ann. Probab. 29 (2001) 1061–1085 | DOI | MR | Zbl

[40] E. Pardoux and A. Yu Veretennikov, On the Poisson equation and diffusion approximation II. Ann. Probab. 31 (2003) 1166–1192 | DOI | MR | Zbl

[41] E. Pardoux and A. Yu And Veretennikov, On the Poisson equation and diffusion approximation. III, Ann. Probab. 33 (2005) 1111–1133 | MR | Zbl

[42] M.V. Safonov, On the classical solution of nonlinear elliptic equations of second order. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) 1272–1287 | MR | Zbl

[43] N.S. Trudinger, On regularity and existence of viscoity solutions of nonlinear second order, elliptic equations. Partial differential equations and the Calculus of variations: Essays in Honor of Ennio de Giorgi, Progress in Nonlinear Differential Equations and theirApplications. Birkhaüser Boston Inc. (1989) | MR | Zbl

[44] A. Yu. Veretennikov, On large deviations for SDEs with small diffusion and averaging. Stochastic Process. Appl. 89 (2000) 69–79 | DOI | MR | Zbl

Cité par Sources :