@article{AIHPC_2005__22_5_667_0, author = {Lions, Pierre-Louis and Souganidis, Panagiotis E.}, title = {Homogenization of degenerate second-order {PDE} in periodic and almost periodic environments and applications}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {667--677}, publisher = {Elsevier}, volume = {22}, number = {5}, year = {2005}, doi = {10.1016/j.anihpc.2004.10.009}, mrnumber = {2171996}, zbl = {02235973}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/} }
TY - JOUR AU - Lions, Pierre-Louis AU - Souganidis, Panagiotis E. TI - Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 667 EP - 677 VL - 22 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/ DO - 10.1016/j.anihpc.2004.10.009 LA - en ID - AIHPC_2005__22_5_667_0 ER -
%0 Journal Article %A Lions, Pierre-Louis %A Souganidis, Panagiotis E. %T Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 667-677 %V 22 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/ %R 10.1016/j.anihpc.2004.10.009 %G en %F AIHPC_2005__22_5_667_0
Lions, Pierre-Louis; Souganidis, Panagiotis E. Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 667-677. doi : 10.1016/j.anihpc.2004.10.009. http://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/
[1] Quasi-periodic homogenizations for second-order Hamilton-Jacobi-Bellman equations, Adv. Math. Sci. Appl. 11 (2001) 465-480. | MR | Zbl
,[2] On ergodic stochastic control, Comm. Partial Differential Equations 23 (1998) 2187-2217. | MR | Zbl
, ,[3] A weak Bernstein method for fully nonlinear elliptic equations, Differential Integral Equations 4 (1991) 241-262. | MR | Zbl
,[4] Controlled diffusions in a random medium, Stochastics 24 (1988) 87-120. | MR | Zbl
, ,[5] Homogenization of a Hamilton-Jacobi equation associated with the geometric motion of an interface, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 773-805. | MR | Zbl
, ,[6] Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 153-165. | Numdam | MR | Zbl
, ,[7] Fully nonlinear elliptic partial differential equations, Amer. Math. Soc., 1997.
, ,[8] A note on nonlinear homogenization, Comm. Pure Appl. Math. 52 (1999) 829-838. | MR | Zbl
,[9] L.A. Caffarelli, P.-L., Lions, P.E. Souganidis, in preparation.
[10] Stochastic homogenization for fully nonlinear, second-order partial differential equations, Comm. Pure Appl. Math. LVII (2005) 319-361. | MR | Zbl
, , ,[11] Homogenization of random semilinear PDEs, Probab. Theory Related Fields 121 (2001) 492-524. | MR | Zbl
,[12] Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalue and variational formulas, Indiana Univ. Math. J. 45 (1996) 1095-1117. | MR | Zbl
,[13] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, , ,[14] Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 (1986) 28-42. | MR | Zbl
, ,[15] N. Dirr, A. Yip, personal communication.
[16] A class of homogenization problems in the calculus of variations, Comm. Pure Appl. Math. XLIV (1991) 733-759. | MR | Zbl
,[17] Periodic homogenization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 245-265. | MR | Zbl
,[18] The perturbed test function method for viscosity solutions of nonlinear pde, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359-375. | MR | Zbl
,[19] On factorization of a non-negative definite matrix, Probab. Theory Appl. 13 (1968) 375-378, (in Russian). | Zbl
,[20] Almost periodic homogenization of Hamilton-Jacobi equations, in: Int. Conf. on Diff. Eqs., vol. 1, Berlin 1999, World Scientific, River Edge, NJ, 2000, pp. 600-605. | MR | Zbl
,[21] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, JDE 83 (1990) 26-78. | MR | Zbl
, ,[22] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1991. | MR | Zbl
, , ,[23] H. Kosynga, F. Rezankhanlou, S.R.S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations, Preprint.
[24] The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys 40 (1985) 73-145. | MR | Zbl
,[25] Resolution de problemes elliptic quasilineaires, Arch. Rational Mech. Anal. 74 (1980) 335-353. | MR | Zbl
,[26] Correctors for the homogenization of Hamilton-Jacobi equations in a stationary ergodic setting, Comm. Pure Appl. Math. LVI (2003) 1501-1524. | MR | Zbl
, ,[27] Homogenization of “viscous” Hamilton-Jacobi equations in stationary ergodic media, Comm. Partial Differential Equations 30 (2005) 335-375. | Zbl
, ,[28] P.-L. Lions, P.E. Souganidis, in preparation.
[29] P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations, Preprint.
[30] Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994) 1-30. | MR | Zbl
, ,[31] S. Müller, private communication.
[32] Alcuni visultati sulle equazioni lineari e quasilineri ellitico-paraboliche a derivate parziali del second ordine, Rend. Classe Sci. Fis. Mat., Nat. Acad. Naz. Lincei, Sci. 8 40 (1966) 774-784. | Zbl
,[33] Boundary value problems with rapidly oscillating random coefficients, in: , , (Eds.), Rigorous Results in Statistical Mechanics and Quantum Field Theory, Proc. Colloq. on Random Fields, Colloquia Mathematica Societ. Janos Bolyai, vol. 10, 1979, pp. 835-873. | MR | Zbl
, ,[34] Diffusion with random coefficients, in: (Ed.), Essays in Statistics and Probability, North-Holland, 1981. | MR | Zbl
, ,[35] Homogenization for stochastic Hamilton-Jacobi equations, Arch. Rational Mech. Anal. 151 (2000) 277-309. | MR | Zbl
, ,[36] The problem of Dirichlet of quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-469. | MR | Zbl
,[37] Front propagation: Theory and applications, in: CIME Course on “Viscosity Solutions and their Applications”, Lecture Notes in Math., vol. 1660, Springer, 1997. | Zbl
,[38] Recent developments in the theory of front propagation and its applications, in: (Ed.), Modern Methods in Scientific Computing and Applications, NATO Science Ser. II, vol. 75, Kluwer Academic, 2002. | MR | Zbl
,[39] Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptotic Anal. 20 (1999) 1-11. | MR | Zbl
,Cité par Sources :