Let be a connected, closed, orientable Riemannian surface and denote by the th eigenvalue of the Laplace−Beltrami operator on . In this paper, we consider the mapping . We propose a computational method for finding the conformal spectrum , which is defined by the eigenvalue optimization problem of maximizing for fixed as varies within a conformal class of fixed volume vol. We also propose a computational method for the problem where is additionally allowed to vary over surfaces with fixed genus, . This is known as the topological spectrum for genus and denoted by . Our computations support a conjecture of [N. Nadirashvili, J. Differ. Geom. 61 (2002) 335–340.] that , attained by a sequence of surfaces degenerating to a union of identical round spheres. Furthermore, based on our computations, we conjecture that , attained by a sequence of surfaces degenerating into a union of an equilateral flat torus and identical round spheres. The values are compared to several surfaces where the Laplace−Beltrami eigenvalues are well-known, including spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume one, the th Laplace−Beltrami eigenvalue has a local maximum with value . Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.
Mots-clés : Extremal Laplace−Beltrami eigenvalues, conformal spectrum, topological spectrum, closed Riemannian surface, spectral geometry, isoperimetric inequality
@article{COCV_2017__23_2_685_0, author = {Kao, Chiu-Yen and Lai, Rongjie and Osting, Braxton}, title = {Maximization of {Laplace\ensuremath{-}Beltrami} eigenvalues on closed {Riemannian} surfaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {685--720}, publisher = {EDP-Sciences}, volume = {23}, number = {2}, year = {2017}, doi = {10.1051/cocv/2016008}, mrnumber = {3608099}, zbl = {1362.35199}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016008/} }
TY - JOUR AU - Kao, Chiu-Yen AU - Lai, Rongjie AU - Osting, Braxton TI - Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 685 EP - 720 VL - 23 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016008/ DO - 10.1051/cocv/2016008 LA - en ID - COCV_2017__23_2_685_0 ER -
%0 Journal Article %A Kao, Chiu-Yen %A Lai, Rongjie %A Osting, Braxton %T Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 685-720 %V 23 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016008/ %R 10.1051/cocv/2016008 %G en %F COCV_2017__23_2_685_0
Kao, Chiu-Yen; Lai, Rongjie; Osting, Braxton. Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 685-720. doi : 10.1051/cocv/2016008. http://www.numdam.org/articles/10.1051/cocv/2016008/
Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012) 235–257. | DOI | MR | Zbl
and ,Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17 (2004) 93–101. | MR | Zbl
and ,Isoperimetric inequalities for eigenvalues of the Laplacian. Proc. Symp. Pure Math. 76 (2007) 105–139. | DOI | MR | Zbl
and ,P.H. Bérard and G. Besson, Lectures on Spectral Geometry. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Instituto de Matematica Pura e Aplicada (1985). | Zbl
Sur les premiéres valeurs propres des variétés Riemanniennes. Comp. Math. 26 (1973) 129–149. | Numdam | MR | Zbl
,Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | DOI | MR | Zbl
,P. Buser, Geometry and spectra of compact Riemann surfaces. Springer (2010). | MR | Zbl
Riemannian metrics with large , Proc. Am. Math. Soc. 122 (1994) 905–906. | MR | Zbl
and ,Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Global Anal. Geom. 24 (2003) 337–349. | DOI | MR | Zbl
and ,Extremal eigenvalues of the Laplacian on Euclidean domains and closed surfaces. Math. Z. 278 (2014) 529–546. | DOI | MR | Zbl
and ,Isoperimetric control of the spectrum of a compact hypersurface. J. Reine Angew. Math. 2013 (2013) 49–65. | DOI | MR | Zbl
, and ,Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds. Bull. London Math. Soc. 42 (2010) 96–108. | DOI | MR | Zbl
, and ,I. Chavel, Eigenvalues in Riemannian geometry. Academic Press (1984). | MR | Zbl
Extremal eigenvalue problems for composite membranes. Part I and II. Appl. Math. Optim. 22 (1990) 153–167 and 169–187. | DOI | MR | Zbl
and ,T.A. Driscoll, N. Hale and L.N. Trefethen, Chebfun guide. Pafnuty Publications, Oxford (2014).
Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58 (2008) 89–104. | DOI | MR | Zbl
and ,Extremal eigenvalue problems defined on conformal classes of compact Riemannian manifolds. Comment. Math. Helvetici 54 (1979) 494–507. | DOI | MR | Zbl
,Hearing shapes of drums-mathematical and physical aspects of isospectrality. Rev. Mod. Phys. 82 (2010) 2213–2255. | DOI
and ,Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83 (2009) 637–661. | DOI | MR | Zbl
, and ,R. Glowinski and D.C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: A numerical approach. Partial Differential Equations. In vol. 16 of Comput. Methods Appl. Sci. Springer (2008) 225–232. | MR | Zbl
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Verlag, Birkhäuser (2006). | MR | Zbl
Quatre propriétés isopérimétriques de membranes sphériques homogenes. (French). C. R. Acad. Sci. Paris Sér. AB 270 (1970) A1645–A1648. | MR | Zbl
,Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces. Springer-Verlag (1992). | MR | Zbl
How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. 2005 (2005) 3967–3985. | DOI | MR | Zbl
, , , and ,Extremal metric for the first eigenvalue on a Klein bottle. Canadian J. Math. 58 (2006) 381–400. | DOI | MR | Zbl
, and ,Nonmaximality of known extremal metrics on torus and Klein bottle. Sb. Math. 204 (2013) 1–17. | DOI | MR | Zbl
,Spectral properties of bipolar surfaces to Otsuki tori. J. Spectr. Theory 4 (2014) 87–111. | DOI | MR | Zbl
,Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258 (2014) 191–239. | DOI | MR | Zbl
,Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37 (1993) 73–93. | DOI | MR | Zbl
,On the spectral gap for compact manifolds. J. Differ. Geom. 36 (1992), 315–330. | DOI | MR | Zbl
,Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization, J. Sci. Comput. 18 (2014) 705–725. | DOI | MR | Zbl
, , , and ,Spectral properties of bipolar minimal surfaces in . Differ. Geom. Appl. 26 (2008) 9–22. | DOI | MR | Zbl
,S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods. New York (2005). | MR | Zbl
Sums of Laplace eigenvalues: Rotations and tight frames in higher dimensions. J. Math. Phys. 52 (2011) 093703. | DOI | MR | Zbl
and ,Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17 (1996) 789–821. | DOI | MR | Zbl
and ,Nonsmooth optimization via quasi-Newton methods. Math. Program. 141 (2013) 135–163. | DOI | MR | Zbl
and ,Bounds of eigenvalues on Riemannian manifolds. ALM 10 (2010) 241–264. | MR | Zbl
and ,Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci. USA 51 (1964) 542. | DOI | MR | Zbl
,Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6 (1996) 877–897. | DOI | MR | Zbl
,Isoperimetric inequality for the second eigenvalue of a sphere. J. Differ. Geom. 61 (2002) 335–340. | DOI | MR | Zbl
,N. Nadirashvili and Y. Sire, Conformal spectrum and harmonic maps. Preprint (2014). | arXiv | MR
Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Comp. Phys. 229 (2010) 8578–8590. | DOI | MR | Zbl
,Minimal convex combinations of sequential Laplace-Dirichlet eigenvalues. SIAM J. Sci. Comput. 35 (2013) B731–B750. | DOI | MR | Zbl
and ,Minimal convex combinations of three sequential Laplace–Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139. | DOI | MR | Zbl
and ,Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. | Numdam | MR | Zbl
,Extremal domains for the first eigenvalue of the Laplace-Beltrami operator. Ann. Inst. Fourier 59 (2009) 515–542. | DOI | Numdam | MR | Zbl
and ,Extremal spectral properties of Lawson tau-surfaces and the Lamé equation. Moscow Math. J. 12 (2012) 173–192. | DOI | MR | Zbl
,Extremal metrics for eigenvalues of the Laplace-Beltrami operator on surfaces. Russian Math. Surveys 68 (2013) 1073. | DOI | MR | Zbl
,Extremal spectral properties of Otsuki tori. Math. Nachr. 286 (2013) 379–391. | DOI | MR | Zbl
,Generalized Lawson tori and Klein bottles. J. Geom. Anal. 25 (2015) 2645–2666. | DOI | MR | Zbl
,R. Petrides, Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Preprint (2013). | arXiv | MR | Zbl
Maximization of the second conformal eigenvalue of spheres. Proc. Am. Math. Soc. 142 (2014) 2385–2394. | DOI | MR | Zbl
,Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator. IEEE Trans. Med. Imaging 25 (2006) 1296–1306. | DOI
, and ,J.W.S. Rayleigh, The Theory of Sound. Vol. 1. Dover Publications New York (1877). | Zbl
Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aid. Design 38 (2006) 342–366. | DOI
, and ,R. Schoen and S.-T. Yau, Lectures on differential geometry. International Press (1994). | Zbl
Y. Shi, R. Lai, R. Gill, D. Pelletier, D. Mohr, N. Sicotte and A.W. Toga, Conformal metric optimization on surface (cmos) for deformation and mapping in Laplace-Beltrami embedding space, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011. Springer (2011) 327–334.
Implicit application of polynomial filters in a -step Arnoldi method. SIAM J. Matrix Anal. Appl. 13 (1992) 357–385. | DOI | Zbl
,L. N. Trefethen, Spectral methods in MATLAB. Vol. 10. SIAM (2000). | Zbl
On the least positive eigenvalue of the Laplacian for compact group manifolds. J. Math. Soc. Jpn 31 (1979) 209–226. | DOI | Zbl
,Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Sc. Norm. Super. Pisa-Cl. Sci. 7 (1980) 55–63. | Numdam | Zbl
and ,Cité par Sources :