@article{ASNSP_1980_4_7_1_55_0, author = {Yang, Paul C. and Yau, Shing-Tung}, title = {Eigenvalues of the laplacian of compact {Riemann} surfaces and minimal submanifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {55--63}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 7}, number = {1}, year = {1980}, mrnumber = {577325}, zbl = {0446.58017}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1980_4_7_1_55_0/} }
TY - JOUR AU - Yang, Paul C. AU - Yau, Shing-Tung TI - Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1980 SP - 55 EP - 63 VL - 7 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1980_4_7_1_55_0/ LA - en ID - ASNSP_1980_4_7_1_55_0 ER -
%0 Journal Article %A Yang, Paul C. %A Yau, Shing-Tung %T Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1980 %P 55-63 %V 7 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1980_4_7_1_55_0/ %G en %F ASNSP_1980_4_7_1_55_0
Yang, Paul C.; Yau, Shing-Tung. Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 7 (1980) no. 1, pp. 55-63. http://www.numdam.org/item/ASNSP_1980_4_7_1_55_0/
[1] Sur les premières valeurs propres des variétés Riemanniennes, Compositio Math., 26 (1973), pp. 129-149. | Numdam | MR | Zbl
,[2] Eigenvalues comparison theorems and its geometric applications, Math. Z., 143 (1975), pp. 289-297. | MR | Zbl
,[3] Quatre properiétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris, 270 (1970), pp. 1645-1648. | MR | Zbl
,[4] Foundations of Differential Geometry, Volume II. | Zbl
- ,[5] On the ratio of consecutive eigenvalues, J. Mathematical Phys., 35 (1956), pp. 289-298. | MR | Zbl
- - ,[6] The first eigenvalues of the laplacian on spheres, to appear in Tôhoku Math. J. | MR | Zbl
,[7] On the least positive eigenvalue of the laplacian for riemannian manifolds II, preprint. | MR
:[8] Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup., 8 (1975), pp. 487-507. | Numdam | MR | Zbl
,