A convex analysis approach to optimal controls with switching structure for partial differential equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 581-609.

Optimal control problems involving hybrid binary-continuous control costs are challenging due to their lack of convexity and weak lower semicontinuity. Replacing such costs with their convex relaxation leads to a primal-dual optimality system that allows an explicit pointwise characterization and whose Moreau–Yosida regularization is amenable to a semismooth Newton method in function space. This approach is especially suited for computing switching controls for partial differential equations. In this case, the optimality gap between the original functional and its relaxation can be estimated and shown to be zero for controls with switching structure. Numerical examples illustrate the effectiveness of this approach.

Reçu le :
DOI : 10.1051/cocv/2015017
Classification : 49J20, 49K52, 49K20
Mots-clés : Optimal control, switching control, partial differential equations, nonsmooth optimization, convexification, semi-smooth Newton method
Clason, Christian 1 ; Ito, Kazufumi 2 ; Kunisch, Karl 3

1 Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany
2 Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
3 Institute of Mathematics and Scientific Computing, Karl-Franzens-University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
@article{COCV_2016__22_2_581_0,
     author = {Clason, Christian and Ito, Kazufumi and Kunisch, Karl},
     title = {A convex analysis approach to optimal controls with switching structure for partial differential equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {581--609},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015017},
     mrnumber = {3491785},
     zbl = {1338.49056},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2015017/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Ito, Kazufumi
AU  - Kunisch, Karl
TI  - A convex analysis approach to optimal controls with switching structure for partial differential equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 581
EP  - 609
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2015017/
DO  - 10.1051/cocv/2015017
LA  - en
ID  - COCV_2016__22_2_581_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Ito, Kazufumi
%A Kunisch, Karl
%T A convex analysis approach to optimal controls with switching structure for partial differential equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 581-609
%V 22
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2015017/
%R 10.1051/cocv/2015017
%G en
%F COCV_2016__22_2_581_0
Clason, Christian; Ito, Kazufumi; Kunisch, Karl. A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 581-609. doi : 10.1051/cocv/2015017. http://www.numdam.org/articles/10.1051/cocv/2015017/

H. Attouch and H. Brezis, Duality for the Sum of Convex Functions in General Banach Spaces, in Aspects of Mathematics and its Applications. North-Holland, Amsterdam (1986) 125–133. | MR | Zbl

H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011). | MR | Zbl

A. Beck and M. Teboulle, Smoothing and first order methods: a unified framework. SIAM J. Optim. 22 (2012) 557–580. | DOI | MR | Zbl

A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford (2002). | MR | Zbl

H. Brezis, M.G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure Appl. Math. 23 (1970) 123–144. | DOI | MR | Zbl

I. Capuzzo Dolcetta and L.C. Evans, Optimal switching for ordinary differential equations. SIAM J. Contr. Optim. 22 (1984) 143–161. | DOI | MR | Zbl

C. Clason and K. Kunisch, Multi-bang control of elliptic systems. Ann. Inst. Henri Poincaré (C) Anal. Non Lin. 31 (2014) 1109–1130. | DOI | Numdam | MR | Zbl

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl

M. Gugat, Optimal switching boundary control of a string to rest in finite time. ZAMM 88 (2008) 283–305. | DOI | MR | Zbl

M. Gugat, Penalty techniques for state constrained optimal control problems with the wave equation. SIAM J. Control Optim. 48 (2009/2010) 3026–3051. | DOI | MR | Zbl

F.M. Hante, G. Leugering and T.I. Seidman, Modeling and analysis of modal switching in networked transport systems. Appl. Math. Optim. 59 (2009) 275–292. | DOI | MR | Zbl

F.M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55 (2013) 197–225. | DOI | MR | Zbl

J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer-Verlag, Berlin (2001). | MR | Zbl

O.V. Iftime and M.A. Demetriou, Optimal control of switched distributed parameter systems with spatially scheduled actuators. Automatica J. IFAC 45 (2009) 312–323. | DOI | MR | Zbl

K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA (2008). | MR | Zbl

K. Ito and K. Kunisch, Optimal control with L p (Ω), p[0,1), control cost. SIAM J. Control Optim. 52 (2014) 1251–1275. | DOI | MR | Zbl

Q. Lü and E. Zuazua, Robust null controllability for heat equations with unknown switching control mode. Discrete Contin. Dyn. Syst. B 34 (2014) 4183–4210. | DOI | MR | Zbl

P. Martinez and J. Vancostenoble, Stabilization of the wave equation by on-off and positive-negative feedbacks. ESAIM: COCV 7 (2002) 335–377. | Numdam | MR | Zbl

J.-J. Moreau, Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273–299. | DOI | Numdam | MR | Zbl

W. Schirotzek, Nonsmooth Analysis. Universitext, Springer, Berlin (2007). | MR | Zbl

R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King, Stability criteria for switched and hybrid systems. SIAM Rev. 49 (2007) 545–592. | DOI | MR | Zbl

M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia, PA (2011). | MR | Zbl

J. Yong, Systems governed by ordinary differential equations with continuous, switching and impulse controls. Appl. Math. Optim. 20 (1989) 223–235. | DOI | MR | Zbl

E. Zuazua, Switching control. J. Eur. Math. Soc. 13 (2011) 85–117. | DOI | MR | Zbl

Cité par Sources :