Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback
Mots-clés : damped wave equation, asymptotic behavior, on-off feedback, congruences, observability inequalities
@article{COCV_2002__7__335_0, author = {Martinez, Patrick and Vancostenoble, Judith}, title = {Stabilization of the wave equation by on-off and positive-negative feedbacks}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {335--377}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002015}, mrnumber = {1925033}, zbl = {1026.35061}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002015/} }
TY - JOUR AU - Martinez, Patrick AU - Vancostenoble, Judith TI - Stabilization of the wave equation by on-off and positive-negative feedbacks JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 335 EP - 377 VL - 7 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002015/ DO - 10.1051/cocv:2002015 LA - en ID - COCV_2002__7__335_0 ER -
%0 Journal Article %A Martinez, Patrick %A Vancostenoble, Judith %T Stabilization of the wave equation by on-off and positive-negative feedbacks %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 335-377 %V 7 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002015/ %R 10.1051/cocv:2002015 %G en %F COCV_2002__7__335_0
Martinez, Patrick; Vancostenoble, Judith. Stabilization of the wave equation by on-off and positive-negative feedbacks. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 335-377. doi : 10.1051/cocv:2002015. https://www.numdam.org/articles/10.1051/cocv:2002015/
[1] On the asymptotic stability of oscillators with unbounded damping. Quart. Appl. Math. 34 (1976) 195-199. | MR | Zbl
and ,[2] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl
, and ,[3] Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue (1989) 11-31. | Zbl
, and ,[4] Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math. 33 (1980) 707-725. | MR | Zbl
and ,[5] Energy decay rate of wave equations with indefinite damping. J. Differential Equations 161 (2000) 337-357. | MR | Zbl
and ,[6] Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 1748-1755. | MR | Zbl
and ,[7] Stability results for the wave equation with indefinite damping. J. Differential Equations 132 (1996) 338-352. | MR | Zbl
and ,[8] Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Publications du Laboratoire d'Analyse numérique. Université Pierre et Marie Curie (1988).
,[9] A generalized internal control for the wave equation in a rectangle. J. Math. Anal. Appl. 153 (1990) 190-216. | MR | Zbl
,[10] Asymptotic behavior of solutions of a nonstandard second order differential equation. Differential Integral Equations 6 (1993) 1201-1215. | MR | Zbl
, and ,[11] On the stability of the zero solution of second order nonlinear differential equations. Acta Sci. Math. 32 (1971) 1-9. | MR | Zbl
,[12] Asymptotic stability of the equilibrium of the damped oscillator. Differential Integral Equation 6 (1993) 835-848. | MR | Zbl
and , , , and Vilmos, A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995) 209-223. |[14] Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. | MR | Zbl
, and ,[15] A direct method for boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33-54. | MR | Zbl
and[16] Exact Controllability and Stabilization. The Multiplier Method. John Wiley, Chicester and Masson, Paris (1994). | MR | Zbl
,[17] Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 (1983) 163-182. | MR | Zbl
,[18] Note on boundary stabilization of wave equation. SIAM J. Control Optim. 26 (1988) 1250-1256. | MR | Zbl
,
[19] Uniform exponential decay in a bounded region with
[20] Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992) 189-224. | MR | Zbl
and ,[21] Contrôlabilité exacte de systèmes distribués. C. R. Acad. Sci. Paris 302 (1986) 471-475. | MR | Zbl
,[22] Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Masson, RMA 8 (1988). | Zbl
,[23] Exact controllability, stabilization adn perturbations for distributd systems. SIAM Rev. 30 (1988) 1-68. | MR | Zbl
,[24] Asymptotic behavior of solutions of one-dimensional damped wave equations. Comm. Appl. Nonlin. Anal. 1 (1999) 99-116. | Zbl
,[25] Precise decay rate estimates for time-dependent dissipative systems. Israël J. Math. 119 (2000) 291-324. | MR | Zbl
,[26] Exact controllability in “arbitrarily short time” of the semilinear wave equation. Discrete Contin. Dynam. Systems (to appear). | Zbl
and ,[27] On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation. Adv. Math. Sci. Appl. 7 (1997) 317-331. | MR | Zbl
,[28] Ergodic Theory. Cambridge University Press, Cambridge, Studies in Adv. Math. 2 (1983). | MR | Zbl
,[29] Precise damping conditions for global asymptotic stability for nonlinear second order systems. Acta Math. 170 (1993) 275-307. | MR | Zbl
and ,[30] Precise damping conditions for global asymptotic stability for nonlinear second order systems, II. J. Differential Equations 113 (1994) 505-534. | MR | Zbl
and ,[31] Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994) 815-835. | MR | Zbl
and ,[32] Asymptotic stability for nonautonomous dissipative wave systems. Comm. Pure Appl. Math. XLIX (1996) 177-216. | MR | Zbl
and ,[33] Local asymptotic stability for dissipative wave systems. Israël J. Math. 104 (1998) 29-50. | MR | Zbl
and ,
[34] Asymptotic stability of
[35] On global asymptotic stability of certain second order differential equations with integrable forcing terms. SIAM J. Appl. Math. 24 (1973) 50-61. | MR | Zbl
and ,[36] Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J. Control Optim. 39 (2000) 776-797. | MR | Zbl
and ,[37] An introduction to the exact controllability for distributed systems, Textos et Notas 44, CMAF. Universidades de Lisboa (1990). | MR
,Cité par Sources :