Stabilization of the Kawahara equation with localized damping
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 102-116.

We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.

DOI : 10.1051/cocv/2009041
Classification : 35Q35, 35B40, 35Q53
Mots-clés : Kawahara equation, stabilization, energy decay, localized damping
@article{COCV_2011__17_1_102_0,
     author = {Vasconcellos, Carlos F. and da Silva, Patricia N.},
     title = {Stabilization of the {Kawahara} equation with localized damping},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {102--116},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     doi = {10.1051/cocv/2009041},
     mrnumber = {2775188},
     zbl = {1210.35215},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009041/}
}
TY  - JOUR
AU  - Vasconcellos, Carlos F.
AU  - da Silva, Patricia N.
TI  - Stabilization of the Kawahara equation with localized damping
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 102
EP  - 116
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009041/
DO  - 10.1051/cocv/2009041
LA  - en
ID  - COCV_2011__17_1_102_0
ER  - 
%0 Journal Article
%A Vasconcellos, Carlos F.
%A da Silva, Patricia N.
%T Stabilization of the Kawahara equation with localized damping
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 102-116
%V 17
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009041/
%R 10.1051/cocv/2009041
%G en
%F COCV_2011__17_1_102_0
Vasconcellos, Carlos F.; da Silva, Patricia N. Stabilization of the Kawahara equation with localized damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 102-116. doi : 10.1051/cocv/2009041. http://www.numdam.org/articles/10.1051/cocv/2009041/

[1] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. A 272 (1972) 47-78. | MR | Zbl

[2] N.G. Berloff and L.N. Howard, Solitary and periodic solutions for nonlinear nonintegrable equations. Stud. Appl. Math. 99 (1997) 1-24. | MR | Zbl

[3] H.A. Biagioni and F. Linares, On the Benney-Lin and Kawahara equations. J. Math. Anal. Appl. 211 (1997) 131-152. | MR | Zbl

[4] J.L. Bona and H. Chen, Comparison of model equations for small-amplitude long waves. Nonlinear Anal. 38 (1999) 625-647. | MR | Zbl

[5] T.J. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal. 33 (2002) 1356-1378. | MR | Zbl

[6] J.M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lenghts. J. Eur. Math. Soc. 6 (2004) 367-398. | MR | Zbl

[7] G.G. Doronin and N.A. Larkin, Kawahara equation in a bounded domain. Discrete Continuous Dyn. Syst., Ser. B 10 (2008) 783-799. | MR | Zbl

[8] H. Hasimoto, Water waves. Kagaku 40 (1970) 401-408 [in Japanese].

[9] T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Japan 26 (1969) 1305-1318.

[10] T. Kawahara, Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 33 (1972) 260-264.

[11] F. Linares and J.H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation. ESAIM: COCV 11 (2005) 204-218. | Numdam | MR | Zbl

[12] F. Linares and A.F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries with localized damping. Proc. Amer. Math. Soc. 135 (2007) 1515-1522. | MR | Zbl

[13] J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1: Contrôlabilité Exacte, in RMA 8, Masson, Paris, France (1988). | MR | Zbl

[14] C.P. Massarolo, G.P. Menzala and A.F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping. Math. Meth. Appl. Sci. 30 (2007) 1419-1435. | MR | Zbl

[15] G.P. Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Quarterly Applied Math. LX (2002) 111-129. | MR | Zbl

[16] A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM: COCV 11 (2005) 473-486. | Numdam | MR | Zbl

[17] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, USA (1983). | MR | Zbl

[18] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974) 79-86. | MR | Zbl

[19] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55. | Numdam | MR | Zbl

[20] L. Rosier and B.Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain. SIAM J. Contr. Opt. 45 (2006) 927-956. | MR | Zbl

[21] D.L. Russell and B.Y. Zhang, Exact controllability and stabilization of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 1515-1522. | MR | Zbl

[22] J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Diff. Equation 66 (1987) 118-139. | MR | Zbl

[23] G. Schneider and C.E. Wayne, The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal. 162 (2002) 247-285. | MR | Zbl

[24] J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 44 (1978) 663-666. | MR

[25] C.F. Vasconcellos and P.N. Da Silva, Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal. 58 (2008) 229-252. | MR | Zbl

[26] C.F. Vasconcellos and P.N. Da Silva, Erratum of the Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal. (to appear). | Zbl

[27] E. Zuazua, Contrôlabilité Exacte de Quelques Modèles de Plaques en un Temps Arbitrairement Petit. Appendix in [13], 165-191.

[28] E. Zuazua, Exponential decay for the semilinear wave equation with locally distribued damping. Comm. Partial Diff. Eq. 15 (1990) 205-235. | MR | Zbl

Cité par Sources :