On the controllability and stabilization of the linearized Benjamin-Ono equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 204-218.

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which gives us an exponential decay of the solutions.

DOI : 10.1051/cocv:2005002
Classification : 37L50, 93B05, 93C20, 93D15
Mots clés : exact controllability, stabilization, Benjamin-Ono equation, dispersive equation
@article{COCV_2005__11_2_204_0,
     author = {Linares, Felipe and Ortega, Jaime H.},
     title = {On the controllability and stabilization of the linearized {Benjamin-Ono} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {204--218},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {2},
     year = {2005},
     doi = {10.1051/cocv:2005002},
     mrnumber = {2141886},
     zbl = {1125.93006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2005002/}
}
TY  - JOUR
AU  - Linares, Felipe
AU  - Ortega, Jaime H.
TI  - On the controllability and stabilization of the linearized Benjamin-Ono equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 204
EP  - 218
VL  - 11
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2005002/
DO  - 10.1051/cocv:2005002
LA  - en
ID  - COCV_2005__11_2_204_0
ER  - 
%0 Journal Article
%A Linares, Felipe
%A Ortega, Jaime H.
%T On the controllability and stabilization of the linearized Benjamin-Ono equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 204-218
%V 11
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2005002/
%R 10.1051/cocv:2005002
%G en
%F COCV_2005__11_2_204_0
Linares, Felipe; Ortega, Jaime H. On the controllability and stabilization of the linearized Benjamin-Ono equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 204-218. doi : 10.1051/cocv:2005002. http://www.numdam.org/articles/10.1051/cocv:2005002/

[1] M. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. | Zbl

[2] M.J. Ablowitz and A.S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems. Stud. Appl. Math. 68 (1983) 1-10. | Zbl

[3] T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559-592. | Zbl

[4] J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. | Zbl

[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3 (1993) 107-156, 209-262. | Zbl

[6] K.M. Case, Benjamin-Ono related equations and their solutions. Proc. Nat. Acad. Sci. USA 76 (1979) 1-3. | Zbl

[7] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998). | MR | Zbl

[8] J. Colliander and C.E. Kenig, The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differential Equations 27 (2002) 2187-2266. | Zbl

[9] K.D. Danov and M.S. Ruderman, Nonlinear waves on shallow water in the presence of a horizontal magnetic field. Fluid Dynamics 18 (1983) 751-756. | Zbl

[10] A.E. Ingham, A further note on trigonometrical inequalities. Proc. Cambridge Philos. Soc. 46 (1950) 535-537. | Zbl

[11] R. Iorio, On the Cauchy problem for the Benjamin-Ono equation. Comm. Partial Differentiel Equations 11 (1986) 1031-1081. | Zbl

[12] Y. Ishimori, Solitons in a one-dimensional Lennard/Mhy Jones lattice. Progr. Theoret. Phys. 68 (1982) 402-410. | Zbl

[13] C.E. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10 (2003) 879-895. | Zbl

[14] C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation. J. Amer. Math Soc. 9 (1996) 573-603. | Zbl

[15] H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in H s (). Int. Math. Res. Not. 26 (2003) 1449-1464. | Zbl

[16] Y. Matsuno and D.J. Kaup, Initial value problem of the linearized Benjamin-Ono equation and its applications. J. Math. Phys. 38 (1997) 5198-5224. | Zbl

[17] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677-1696. | Zbl

[18] H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 1082-1091.

[19] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983). | MR | Zbl

[20] G. Perla-Menzala, F. Vasconcellos and E. Zuazua. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111-129. | Zbl

[21] G. Ponce, On the global well-posedness of the Benjamin-Ono equation. Diff. Integral Equations 4 (1991) 527-542. | Zbl

[22] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55. | Numdam | Zbl

[23] D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain. SIAM J. Cont. Optim. 31 (1993) 659-676. | Zbl

[24] D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643-3672. | Zbl

[25] T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 (), preprint (2003). | MR | Zbl

Cité par Sources :