In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane.
Mots clés : attainability, controlability, local variations, polynomial control, linear controls
@article{COCV_2001__6__499_0, author = {Krastanov, Mikhail and Quincampoix, Marc}, title = {Local small time controllability and attainability of a set for nonlinear control system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {499--516}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1849413}, zbl = {1082.93003}, language = {en}, url = {http://www.numdam.org/item/COCV_2001__6__499_0/} }
TY - JOUR AU - Krastanov, Mikhail AU - Quincampoix, Marc TI - Local small time controllability and attainability of a set for nonlinear control system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 499 EP - 516 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2001__6__499_0/ LA - en ID - COCV_2001__6__499_0 ER -
%0 Journal Article %A Krastanov, Mikhail %A Quincampoix, Marc %T Local small time controllability and attainability of a set for nonlinear control system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 499-516 %V 6 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2001__6__499_0/ %G en %F COCV_2001__6__499_0
Krastanov, Mikhail; Quincampoix, Marc. Local small time controllability and attainability of a set for nonlinear control system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 499-516. http://www.numdam.org/item/COCV_2001__6__499_0/
[1] The exponential representation of flows and the chronological calculus. Math. USSR Sbornik 35 (1978) 727-785. | Zbl
and ,[2] Self-accessibility of a set with respect to a multivalued field. JOTA 31 (1980) 535-552. | MR | Zbl
and ,[3] Time optimal problem and time optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48 (1990) 401-429. | MR | Zbl
and ,[4] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304. | EuDML | Numdam | MR | Zbl
,[5] Local controllability of odd systems. Banach Center Publications,Warsaw, Poland 1 (1974) 39-45. | EuDML | Zbl
,[6] Minimal time for constrained nonlinear control problems without controllability. Appl. Math. Optim. 36 (1997) 21-42. | MR | Zbl
, and ,[7] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163-178. | MR | Zbl
,[8] Control of systems to sets and their interiors. JOTA 88 (1996) 3-23. | MR | Zbl
and ,[9] Fonctionnelles causales nonlinéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981) 3-40. | EuDML | Numdam | MR | Zbl
,[10] Local controllability of control systems with feedback. JOTA 60 (1989) 277-296. | MR | Zbl
,[11] Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim. 16 (1978) 715-727. | MR | Zbl
,[12] Strong controllability of nonlinear systems. SIAM J. Control Optim. 16 (1989) 264-275. | MR | Zbl
,[13] Polynomial Control Systems. Math. Ann. 272 (1985) 361-368. | MR | Zbl
and ,[14] The high order maximal principle and its applications to singular extremals. SIAM J. Control Optim. 15 (1977) 256-293. | MR | Zbl
,[15] On the controllability of nonlinear systems with application to polynomial systems. Appl. Math. Optim. 5 (1979) 89-99. | MR | Zbl
,[16] Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. I Math. 281 (1975) 795-797. | MR | Zbl
,[17] Hölder Continuity of the Minimum-Time Function for -Manifold Targets. JOTA 75 (1992) 2. | MR | Zbl
,[18] A sufficient condition for local controllability. SIAM J. Control Optim. 16 (1978) 790-802. | MR | Zbl
,[19] Lie brackets and local controllability - A sufficient condition for scalar-input control systems. SIAM J. Control Optim. 21 (1983) 683-713. | Zbl
,[20] A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-194. | MR | Zbl
,[21] On the controllability of control constrained systems. Mathematica Balkanica (N.S.) 2 (1988) 2-3, 147-155. | MR | Zbl
,[22] Controllability of piece-wise linear systems. Systems Control Lett. 7 (1986) 335-341. | MR | Zbl
and ,[23] Attractiveness and invariance: The case of uncertain measurement, edited by Kurzhanski and Veliov, Modeling Techniques for uncertain Systems. PSCT 18, Birkhauser (1994). | MR | Zbl
,[24] On the Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335-361. | MR | Zbl
,