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LOCAL SMALL TIME CONTROLLABILITY AND ATTAINABILITY
OF A SET FOR NONLINEAR CONTROL SYSTEM ∗

Mikhail Krastanov1 and Marc Quincampoix2

Abstract. In the present paper, we study the problem of small-time local attainability (STLA) of a
closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted
to a given closed set and prove a new attainability result for a general dynamical system. This provide
our main result for nonlinear control systems. Some applications to linear and polynomial systems
are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a
hyperplane.
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1. Introduction

Small time local controllability is a central property for studying the regularity of Time Minimal problem for
control systems [3,24]. In general it is well known that the minimal time function is only lower semicontinuous [6].

There exist different approaches to study the local small time controllability and attainability at a point,
leading to different results and requiring different assumptions (see for instance [11, 18, 20, 21]). The problem
of attainability of a closed set has been only partially studied using only zero order and one order approaches
(cf. [2, 8, 23, 24]).

It is worth pointing out that local controllability of a given set is not reduced to the question of local
controllability at every point of the set, so it needs a specific study (this fact will appear clearly for instance in
Prop. 4.1).

Our main aim consists in studying the problem of small-time local attainability – STLA in short – of a closed
set. In the present paper, we propose and study the properties of a new class of local variations of zero and
higher order which are well adapted to the considered problem. Our approach allows us to obtain a unified
treatment of the STLA problem.

Because we wish to obtain attainability for various classes of control systems, we define local variations in
the context of a general dynamical system. Such a system is given by a set valued map R : [0, +∞)×R

n 7→ R
n
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with closed nonempty values, which is continuous with respect to the first variable and satisfy the following
semi-group property: for any point x ∈ R

n and for any nonnegative reals s and t the following inclusion holds
true:

R(R(x, t), s)) ⊂ R(x, t + s). (1)

Throughout the paper we shall say that a closed set S ⊂ R
n is small-time locally attainable if and only if for

any time T > 0, a neighborhood O of S exists such that

∀x ∈ O, ∃τ ∈ [0, T ], R(x, τ) ∩ S 6= ∅. (2)

This means that S is attained in time not greater than T .
Later on, we shall use this notion in the context of nonlinear control systems. In this context, R will be

related to the reachable map, so we cover the classical STLA for a point.
The continuity of minimal time for reaching a set is one of the main applications of local attainability.

Here, we also derive the Hölder continuity of the minimal time function. Note that Lipschitz continuity of this
function has been already obtained in [23,24] using zero order condition. In [17], property of 1

2 -Hölder continuity
is derived from first order analysis. We shall provide more precise continuity properties using our higher order
approach.

It is well known (since Kalman’s work) that for linear systems the STLA property at an equilibrium point
can be characterized through a necessary and sufficient condition. When the set S is a hyperplane, we provide
also STLA necessary and sufficient conditions for linear and polynomial control systems.

All results presented in the paper are on the question of attainability. But in our setting we consider
autonomous systems, so attainability of a set in finite time is equivalent to controllability in finite time for the
backward dynamics, so one can translate our results in the framework of small time local controllability of sets.

Let us explain how the paper is organized.
The second section contains preliminaries and different ways for construction of local variations of the reach-

able set with respect to a closed set.
The third section is devoted to statement of sufficient conditions for small-time local attainability of a closed

set for a general dynamical system and then for control systems. From the above STLA conditions we derive
some continuity properties of the minimal time to reach a set.

In the fourth section, it is proved that the sufficient conditions for small-time local attainability derived in
Section 3 are also necessary for the case of linear and polynomial systems when the set is a hyperplane.

2. Local variations with respect to a closed set

2.1. Preliminaries

Throughout the paper, we shall use the following notations and definitions we introduce now.
Let us denote by V the linear space of all analytic vector fields on R

n, considered as a Lie algebra with the
Lie product

[X, Y ] :=
∂Y

∂x
X − ∂X

∂x
Y. (3)

Given an analytic vector field Z and a positive real s, we denote by Exp(sZ) (x) the value of the solution of
the equation

x′(t) = sZ(x(t)), x(0) = x, t ∈ [0, 1], (4)

at time t = 1.
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Let S be an arbitrary closed subset of R
n, and dS(.) denotes the distance function with respect to the set S.

Let x0 belongs to the boundary ∂S of S and let B(x0, r) denote the open ball with center x0 and radius r.

By P we shall denote the set of all function p(t), t ∈ R, of the following type:

p(t) =
k∑

i=1

pit
qi , where 1 ≤ q1 < q2 < ... < qk, and 0 ≤ pi, i = 1, ...k.

By o(t), we denote a family - parametrized by t – of analytic vector fields x 7→ o(t, x) on R
n, which is continuous

in (t, x) and such that for some ω > 1 the ratio o(t, x)/tω is bounded uniformly with respect to x ∈ B(x0, r).
With the above notations, we may define a family of analytic vector fields related to the set S.

Definition 2.1. Let V0
S,x0

(
V+

S,x0

)
be the set of all families of analytic vector fields a(t) = a(t, .) on R

n

(parametrized on t ≥ 0), continuous in (t, x) and such that for every element a(t) from V0
S,x0

(
V+

S,x0

)
there exist

some positive reals r, θ, d, and c such that a(t, x) ≤ c.dS(x)d
(
a(t, x) ≤ c.tθ.dS(x)d

)
for all x ∈ B(x0, r).

Remark 2.1. The assumption on analyticity of the vector fields is made for simplicity of the exposition. In
fact, this definition, Definition 2.2 and all assertions after that, hold true assuming only that the corresponding
vector fields are sufficiently smooth. To prove this, one can apply the formalism of the noncommutative vector
fields and nilpotent approximations (see for example [1, 7, 9] and [19]).

Remark 2.2. The smoothness of the considered vector fields and the definition of Lie bracket (3), imply that
the set V0

S,x0

(
V+

S,x0

)
is a Lie subalgebra of V .

2.2. A class of high order variations

Let us consider a generalized dynamical system given by a set valued map R : [0, +∞)×R
n 7→ R

n satisfying
the semi-group property (1). We do not want to fix the form of the dynamical system too early, because the
important tool of our approach is the notion of local variation. Later on we shall consider dynamical systems
governed by differential inclusions, affine control systems and, as particular cases, as linear and polynomial
control systems.

Using some of the ideas from [3,10,11,14,21,22], etc., we define a family of variations which, in our opinion,
are useful for studying the problem of local attainability of a set with respect to the considered generalized
dynamical system.

Definition 2.2. Let S be an arbitrary closed subset of R
n and let x0 belong to the boundary ∂S of S. It is

said that the analytic vector field Z belongs to the set Sα
x0

if and only if there exist an element p ∈ P , positive
real numbers r and T , a family of vector field a(t) ∈ V+

S,x0
such that for every point x in B(x0, r) \ S and each

t ∈ [0, T ]

Exp(tαZ + a(t) + o(tα))(x) ∈ R(x, p(t)), (5)

where o(t) is defined as in Section 2.1.

Remark 2.3. By setting t := tβ/α one can prove that that the relation A ∈ Sα
x0

implies that A ∈ Sβ
x0

for every
β > α.

An interesting and difficult problem is to characterize the set Sα
x0

. In the present paper we prove that this
set have the same properties as the corresponding sets of high order variations used for the case when the set
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S is a single point. Our proofs are based on the classical formulae of Campbell–Baker–Hausdorff: if X and Y
are analytic vector fields on R

n, then

Exp(t1X)Exp(t2Y )(x) = Exp
(
t1X + t2Y +

t1t2
2

[X, Y ] +
t1t

2
2

12
[Y, [Y, X ]] +

t21t2
12

[X, [X, Y ]] + ...
)
(x), (6)

Exp(−t1X)Exp(t2Y )Exp(t1X)(x) = Exp

(
t2

∞∑
k=0

tk1
k!

(adk X, Y )

)
(x), (7)

where the right-hand sides (with the infinite sums) are convergent for sufficiently small |t1| and |t2|. Here we
have used the following notation: (ad0 X, Y ) := Y, and (adk+1 X, Y ) := [X, (adk X, Y )].

Next, we introduce a subset S of the set Sα
x0

, which can be used for constructing “new” elements of the set
Sα

x0
, provided that some elements of Sα

x0
are already known (cf. [12] and [15] where similar sets are also defined).

Definition 2.3. It is said that the analytic vector field Z belongs to the set S if and only if there exist positive
real numbers K and T , such that for every point x and each t ∈ [0, T ]

Exp(tZ)(x) ∈ R(x, Kt). (8)

Remark 2.4. As in [15], it can be proved that the set S is a convex cone. Moreover, modifying the original
proofs, one can prove the following assertions:

Proposition 2.1. (Sussmann [18]). Let A1, A2, ..., Ak, belong to S and A1 + A2 + ... + Ak belong to V0
S,x0

.
Then [Ai, Aj ], i, j = 1, ..., k, belong to S2

x0
.

Proposition 2.2. (Hermes [11]). Let A1 and A2 belong to S and A1+A2 belong to V0
S,x0

. Then [A1, [A1, A2]]
+[A2, [A2, A1]] belongs to S3

x0
.

Here we prove that:

Proposition 2.3. The set Sα
x0

is a convex cone.

Proof. Let A1 and A2 belong to Sα
x0

. According to Definition 2.2, there exist elements pi ∈ P , positive real
numbers ri and Ti, two families of vector fields oi(t) and ai(t) ∈ V+

S,x0
, i = 1, 2, such that for every point x from

B(x0, ri) \ S and each t ∈ [0, Ti]

Exp(tαAi + ai(t) + oi(tα))(x) ∈ R(x, pi(t)). (9)

Let c > 0 be an arbitrary real number. By setting t := τ.c1/α and substituting in (9) we obtain that for every
point x from B(x0, r1) \ S and each τ ∈ [0, T1/c1/α]

Exp(ταcA1 + a1(τ.c1/α) + o1(c.τα))(x) ∈ R(x, p1(c1/ατ)). (10)

i.e. cA1 belongs to Sα
x0

.
Let T > 0 and r > 0 be so small that T < min(T1, T2) and for every point x from B(x0, r) \ S and each

t ∈ [0, T ]

Exp(tA2 + a2(t) + o2(t))(x) ∈ R(x, p2(t)) ∩ B(x0, r1). (11)

Then according to (9), we have that

Exp(tαA1 + a1(t) + o1(tα)) Exp(tαA2 + a2(t) + o2(tα))(x) ∈ R(x, p1(t) + p2(t)).
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Applying the Campbell–Baker–Hausdorff formula, we obtain that

Exp(tα(A1 + A2) + a(t) + o(tα))(x) ∈ R(x, p1(t) + p2(t)),

for some o(t) and a(t) ∈ V+
S,x0

, i.e. A1 + A2 belongs to Sα
x0

. �

Proposition 2.3 does not give any information on constructing new elements of the set Sα
x0

. This can be done
using the following

Proposition 2.4. Let A1 and A2 belong to Sα
x0

, A1 + A2 belongs to V0
S,x0

, and B belongs to S ∩ V0
S,x0

. Then
there exists a real number β such that β > α, and [B, A1] and [B, A2] belong to Sβ

x0
.

Proof. According to Definition 2.2, there exist elements pi ∈ P , positive real numbers ri and Ti, two families
of vector fields oi(t) and ai(t) ∈ V+

S,x0
, i = 1, 2, such that for every point x from B(x0, ri)\S and each t ∈ [0, Ti]

Exp(tαAi + ai(t) + oi(tα))(x) ∈ R(x, pi(t)), (12)

where ai(t, x) ≤ ci.t
θi .dS(x)di and oi(t, x) ≤ Cit

ωi , ωi > α, i = 1, 2.
Next, we choose a positive number b > 0 satisfying the inequality:

b > max
{

1,
1
θi

,
1

ωi − α

}
· (13)

Let us choose T > 0 so small that T b < min(T1, T2) and for each τ ∈ [0, T ]

Exp(τB)Exp(τbαA2 + a2(τb) + o2(τbα+1))(x) ∈ R(x, τ + p2(τb)) ∩ B(x0, r1).

By setting t := τ b and substituting in (12), we obtain that for every point x from B(x0, r) \ S, and each
τ ∈ [0, T ],

Exp(τ bαA1 + a1(τb) + o1(τbα+1)) Exp(τB)
Exp(τ bαA2 + a2(τb) + o2(τbα+1))(x) ∈ R(x, p1(τb) + τ + p2(τb)).

Applying the Campbell–Baker–Hausdorff formula two times, we obtain as a result that there exist suitable
families of vector fields ô1(t) and ô2(t), and â1(t) and â2(t) from V+

S,x0
such that

Exp
(

τB + τ bαA1 +
τbα+1

2
[A1, B] + â1(τb) + ô1(τbα+1)

)

Exp(τ bαA2 + a2(τb) + o2(τbα+1))(x) ∈ R(x, p1(τb) + τ + p2(τb)),
and after that

Exp
(

τB + τ bα(A1 + A2) +
τbα+1

2
([A1, B] + [B, A2]) + â2(τb) + ô2(τbα+1)

)
(x) ∈ R(x, p1(τb) + τ + p1(τb)).

(14)

But
[A1, B] + [B, A2] = [A1 + A2, B] + 2[B, A2].

Moreover, A1 + A2 and B belong to V0
S,x0

, so [A1 + A2, B] also belongs to V0
S,x0

. Hence, the inclusion (14) can
be written as

Exp(τ bα+1[B, A2]) + a(τ) + o(τbα+1))(x) ∈ R(x, p(τ)), (15)
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where o(t) and a(t) ∈ V+
S,x0

are suitable families of vector fields and p(τ) := p1(τb) + τ + p1(τb). So, [B, A2]
belongs to Sbα+1

x0
. Changing the order of A1 and A2, one can prove that [B, A1] also belongs to Sbα+1

x0
. �

Next, following the approach described in [13], we shall define the following – possibly empty – subset Sfast

of the set S:

Definition 2.4. It is said that the analytic vector field Z belongs to the set Sfast if and only if there exists a
positive real number T , such that for every point x, for each µ > 0 and for each t ∈ [0, T ]

Exp(µZ)(x) ∈ R(x, t). (16)

Proposition 2.5. The set Sfast is a convex cone.

Proof. Let Ai ∈ Sfast, and ci > 0, i = 1, 2, be arbitrary positive reals. According to Definition 2.4,

Exp(µAi)(x) ∈ R(x, t), i = 1, 2,

for every point x, for each µ > 0 and for each t ∈ [0, T ]. Hence, for each positive integer n and for each
t ∈ [0, T ],

Exp
(µc1

n
A1

)
Exp

(µc2

n
A2

)
(x) ∈ R

(
x,

t

n

)
· (17)

Applying the Campbell–Baker–Hausdorff formula, we obtain that

Exp
(µ

n
(c1A1 + c2A2) + o

(µ

n

))
(x) ∈ R

(
x,

t

n

)
·

Taking a composition of the last inclusion n-times, we have that

Exp
(µ

n
(c1A1 + c2A2) + o

(µ

n

))
...Exp

(µ

n
(c1A1 + c2A2) + o

(µ

n

))
(x) ∈ R(x, t) i.e.

Exp
(
µ(c1A1 + c2A2) + n.o

(µ

n

))
(x) ∈ R(x, t).

Taking a limit as n → ∞, we complete the proof. �

Proposition 2.6. Let ±A belong to the set Sfast, B belong to the set S and let (adi A, B) ≡ 0 for all i > k.
Then (±1)k(adk A, B) ∈ Sfast.

Proof. According to Definitions 2.3 and 2.4, there exist positive real numbers K and T such that for every
point x and for each µ > 0 and each t ∈ [0, T ],

Exp(±µA)(x) ∈ R(x, t) and Exp(tB)(x) ∈ R(x, Kt).

Then for every positive integer n, for every σ ∈ {±1}, for every point x, for each µ > 0, for each t ∈ [0, T ]

Exp
(
−σn.µ1/k

t1/k
A

)
Exp

(
t.k!
nk

B

)
Exp

(
σ.n.µ1/k

t1/k
A

)
(x) ∈ R

(
x, t

(
1 +

K.k!
nk

))
·
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Applying the Campbell–Baker–Hausdorff formula, we obtain that

Exp

(
tk!
nk

∞∑
i=0

(σ.n.µ1/k)i

i!ti/k
(adi A, B)

)
(x) ∈ R

(
x, t

(
1 +

K.k!
nk

))
·

According to the assumptions of this proposition,

(adi A, B) ≡ 0 for all i > k. So,

Exp

(
tk!
nk

k∑
i=0

(σ.n.µ1/k)i

i!ti/k
(adi A, B)

)
(x) ∈ R

(
x, t

(
1 +

K.k!
nk

))
·

Taking a limit as n → ∞, we obtain

Exp
(
µσk(adk A, B)

)
(x) ∈ R (x, t) .

�

3. A sufficient condition for small-time local attainability of a closed set

With the concept of local variations studied in the previous section, we are ready to study the property of
local attainability of a set with respect to some dynamical system.

3.1. Set-attainability for general dynamical system

Throughout the section we define the supremum of the empty set of R as −∞. We denote by cl A the closure
of the set A.

Associated with an initial condition x0, we call an R-trajectory of the generalized dynamical system R any
continuous function x(·) : [0, +∞) 7→ R

n such that

x(0) = x0 and x(t) ∈ R(x, t), ∀t ≥ 0.

For a set S and a point x ∈ R
n, we define the following set of projections of x on S:

PS(x) := {πx ∈ S, ‖πx − x‖ = dS(x)}·

Theorem 3.1. Let S be a closed subset of R
n. Let α > 0, s > 0, r > 0 and T0 > 0 be given. Let x0 ∈ ∂S. We

assume the following conditions:
A1 starting from any x from cl (B(x0, r) \ S), there exists a R-trajectory x(·) such that for every t ∈ [0, T0],

x(t) = x + a(t; x) + tαA(x) + o(tα; x) ∈ R(t, x);

A2 there exist positive constants N and β such that

max
x∈ cl (B(x0,r)\S)

‖o(tα; x)‖ ≤ N.tα+β ;

A3 there exists some Lipschitz continuous negative function b(·) with a Lipschitz constant Lb on cl (B(x0, r)\S)
such that

max
x∈ cl (B(x0,r)\S), πx∈PS(x)

〈
x − πx

‖x − πx‖ , A(x)
〉

≤ b(x) < 0;
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A4 there exists L0 > 0 such that for all (x, y) in cl(B(x0, r) \ S),

‖A(x) − A(y)‖ ≤ L0‖x − y‖, i = 1, 2 . . . ν;

A5 there exists a Lipschitz continuous nonnegative function c(·) such that

max
x∈ cl (B(x0,r)\S)

‖a(t; x)‖ ≤ tsc(x) and lim
dS(x)→0, x∈ cl(B(x0,r)\S)

c(x) = 0.

Then for every sufficiently small T > 0 there exists a neighborhood B(x0, θ) of x0 such that for every point
x ∈ B(x0, θ) \ S there exists t ∈ [0, T ] such that

R(x, t) ∩ S 6= ∅.

Proof. Let δ := r/2. Note Sδ := S+δB. We set L := max(1, L0, Lb). Without loss of generality, we may assume
that T > 0 is so small that T < min(1, T0) and for every t, 0 < t < T, and for any x from cl (B(x0, r) \ S) the
following inequality holds true

tsc(x) + tα max
x∈ cl (B(x0,r)\S),

‖A(x)‖ + Ntβ < min
(

δ,
|b(x)|
4L

)
· (18)

Then A1 and (18) imply that x(t) ∈ B(x0, 2δ) for all x ∈ B(x0, δ).
According to Lebourg’s Mean Value theorem [16], for any x ∈ B(x0, θ) \ S, 0 < θ ≤ δ (θ will be determined

later on) we obtain

dS(x(t)) = dS(x) + 〈ξ, x(t) − x〉, (19)

where

ξ ∈ co

{
u − πu

‖u − πu‖ , u ∈ x + [0, 1](x(t) − x)
}
· (20)

Since
dS(u) ≤ dS(x) + ‖x − u‖ ≤ θ + ‖x − x(t)‖ ≤ θ + δ ≤ 2δ,

we have that u ∈ S2δ. Let πu be an arbitrary element of PS(u). Then

〈
u − πu

‖u − πu‖ , x(t) − x

〉
=
〈

u − πu

‖u − πu‖ , a(t; x) + tαA(x) + o(tα; x)
〉
· (21)

Assumptions A3 and A4 yield
〈

u−πu

‖u−πu‖ , A(x)
〉

=
〈

u−πu

‖u−πu‖ , A(u)
〉

+
〈

u−πu

‖u−πu‖ , A(x)−A(u)
〉

≤ b(u)+‖A(x)−A(u)‖ ≤ b(x)+2L‖x−x(t)‖. (22)

Analogously, Assumption A2 implies that
〈

u − πu

‖u − πu‖ , a(t; x)
〉

≤ ts.c(x). (23)
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According to (20), there exist nonnegative reals pj , j = 1 . . . q, and points πj
u ∈ PS(u) such that

ξ =
q∑

j=1

pj
u − πj

u

‖u − πj
u‖

,

q∑
j=1

pj = 1.

Then (19) implies that

dS(x(t)) = dS(x) +
q∑

j=1

pj

〈
u − πj

u

‖u − πj
u‖

, x(t) − x

〉
= dS(x) +

q∑
j=1

pj

[〈
u − πj

u

‖u − πj
u‖

, a(t; x)

〉

+

〈
u − πj

u

‖u − πj
u‖

, tαA(x) + o(tα; x)

〉]

(accordingly to (22) and (23))

≤ dS(x) + tsc(x) + tα
[
b(x) + 2L‖x − x(t)‖ + Ntβ

] ≤ dS(x) + tsc(x) + tα

×
[
b(x) + 2L

(
tsc(x) + tα max

x∈ cl (B(x0,r)\S)
‖A(x)‖ + Ntα+β

)
+ Ntβ

]
(accordingly to (18))

≤ dS(x) + tsc(x) + tα
(

b(x) +
1
2
|b(x)| + 1

4
|b(x)|

)
≤ dS(x) + tsc(x) + tα

(
1
4
b(x)

)
≤ 0

for

t ≥
(

4dS(x) + 4c(x)
|b(x)|

) 1
α

· (24)

These values of t are available when the following equality holds true

T >

(
4dS(x) + 4c(x)

|b|
) 1

α

, (25)

where
|b| := min

x∈ cl (B(x0,r)\S)
|b(x)|.

Choosing θ small enough (this can be done according A5), we ensure the validity of (25). �

A more refined regularity of S enables us to obtain more precise attainability condition. As an example of
this fact we give the following result with a first order Taylor Expansion.

Proposition 3.2. Let S := {x ∈ R
n, φ(x) ≤ 0} be a closed subset of R

n, where φ : R
n 7→ R is a C1 function.

Let r > 0 be given. For any x0 ∈ ∂S, we assume conditions A1, A2, A4, A5 and
A3′ There exists some Lipschitz continuous negative function b(·) on cl(B(x0, r) \ S) such that

max
x∈B(x0,r)\S

〈∇φ(x), A(x)〉 ≤ b(x).

Then S is small-time locally attainable for the dynamical system R.
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Proof. The proof follows along the same lines as the proof of Theorem 3.1 using first order Taylor expansion of
φ instead of Lebourg’s Mean value theorem, so we omit this proof. �

Remark 3.1. When φ is of class C2, one can combine Taylor expansion of order 2 of S with the condition A1,
to obtain a similar result (see also Rem. 3.5 and its example). This idea can be generalized to sets given by a
function φ of class Ck.

3.2. Set-attainability for nonlinear control system

The properties of trajectories of dynamical systems and the concept of variations developed in Section 2
enable us to state our main results for control. First, we express zero order attainability condition in the
context of the following differential inclusion:

x′(t) ∈ F (x(t)). (26)

We shall remind that S is STLA for (26) if and only if for any T > 0, a neighborhood O of S exists such that
starting from any x ∈ O exists a trajectory to (26) reaching S in a time not greater than T .

Define the dynamical system R as the reachable map associated with (26):

R(x, t) := {x(t) |where x(·) is a solution to (26) with x(0) = x }·

Clearly STLA properties of R and (26) are equivalent.
Let us define the set of unit proximal normals [4] at x0 to S:

NPS(x0) :=
{

p

‖p‖ , p 6= 0, ∃α > 0, dS(x0 + αp) = α‖p‖
}
·

From Theorem 3.1, one can deduce the following result which is also proved in [3] for smooth manifolds and
in [23, 24] for the general case (see also [8]).

Proposition 3.3. (Zero order sufficient attainability condition). Assume that S ⊂ R
n is compact and

that F is a Lipschitz continuous set-valued map with compact convex values. Suppose that there exists some
δ > 0 such that for any x0 ∈ ∂S

min
v∈F (x0)

max
p∈NPS(x0)

〈p, v〉 ≤ −δ < 0. (27)

Then S is small-time locally attainable for system (26).

Note that if NPS(x0) = ∅ then (27) is automatically satisfied because max ∅ = −∞.

Remark 3.2. When S := {x ∈ R
n, φ(x) ≤ 0} with φ of class C1 and ∇φ(x) 6= 0 on ∂S, one can prove a

similar result replacing proximal normals by ∇φ(x)/‖∇φ(x)‖.

For obtaining high order sufficient conditions, it is required that F contains some regular selection. We now
state our main result when F (x) = f(x) + g(x)U . But of course, one can prove a similar result when there are
some regular vector fields in F (for instance F (x) ⊃ f(x) + g(x)U).

Let us consider the following control system

x′(t) = f(x(t)) + g(x(t)).u(t), (28)

where f : R
n 7→ R

n, g := (g1, g2, . . . gl) : R
n 7→ (Rn)l and u(t) ∈ U ⊂ R

l. We assume that the functions f and
gi are smooth enough, e.g., analytic for sake of simplicity. The properties of trajectories of dynamical systems
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and the concept of variations developped in Section 2 enable us to state our main result for control. For doing
this, let us define the following set of vector fields:

W := {[gi, gj], (adkf, gi), with i, j = 1 . . . l, k ∈ N} · (29)

Theorem 3.4. (High Order Sufficient Attainability condition). Let S be a compact subset of R
n. Let

f and g be analytic and U be a closed subset of R
l such that

0 ∈ Int(U). (30)

We impose that the zero order sufficient attainability condition is violated:
B0′ let for every point x0 ∈ ∂S for which NPS(x0) 6= ∅ the following equality holds true

min
u∈U

〈p, f(x0) + g(x0)u〉 = 0.

Moreover, suppose that for every point x0 ∈ ∂S, there exists some neighborhood B(x0, r) of x0 such that:
B1 there exist some constants C > 0, d > 0 such that

‖f(x)‖ ≤ CdS(x)d, ∀x ∈ B(x0, r)\S; (31)

B2 there exists two Lipschitz continuous functions b(·) : cl(B(x0, r)\S) 7→ R− and w(·) : cl(B(x0, r)\S) 7→ R
n

such that3

w ∈ co W,

and for any x ∈ ∂S ∩ B(x0, r)

max
p∈NPS(x)

〈p, w(x)〉 ≤ b(x) < 0. (32)

Then the set S is small-time locally attainable.

Proof. Let x0 ∈ ∂S. The assumption B1 means that f ∈ V0
S,x0

(B(x0, r) is the neighbourhood of x0 from the
Def. 2.1). Because 0 ∈ Int(U), f ± εgi are admissible velocities on B(x0, r) for ε > 0 small enough. This means
that ±εgi belong to the set S1

x0
. According to Propositions 2.3, 2.4 and Remark 2.3, the set co W is a subset

of the set of variations of high order. So, the assumptions A1, A2, A4 and A5 of Theorem 3.1 holds true.
Let us fix some real e from the interval (0, 1) and let δ := min(|b(x)| : x ∈ S ∩ clB(x0, r)). The compactness

of S and (32) imply that b(x) + eδ < 0 for every point x from ∂S ∩ B(x0, r)).
By L > 0 be greater than the Lipschitz constants of w and b on B(x0, r). We set ξ = min(r/2, eδ/(2L)).

Let x be an arbitrary point from the set B(x0, ξ) and πx be an arbitrary point from the set PS(x). Clearly,

x − πx

‖x − πx‖ ∈ NPS(πx) and

‖x0 − πx‖ ≤ ‖x − x0‖ + ‖x − πx‖ ≤ 2‖x − x0‖ ≤ 2ξ ≤ r.

Then our choice of L and (32) imply that
〈

x − πx

‖x − πx‖ , w(x)
〉

≤
〈

x − πx

‖x − πx‖ , w(πx)
〉

+ ‖w(x) − w(πx)‖

3Notation co means convex hull.
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≤ b(πx) + L‖x − πx‖ ≤ b(x) + 2.L‖x− πx‖ ≤ b(x) + 2Lξ ≤ b(x) + e.δ < 0.

Hence, the Assumption A3 of Theorem 3.1 is also fulfilled. Applying Theorem 3.1 with A = w, we obtain
that for every sufficiently small T > 0 there exists a neighborhood B(x0, θ) of x0 such that for every point
x ∈ B(x0, θ) \ S there exists t ∈ [0, T ] such that

R(x, t) ∩ S 6= ∅.

Using an easy compactness argument one can complete the proof. �

Remark 3.3. Using the same approach, one can easily obtain results for systems of the form

x′(t) = f(x(t), u(t))

as soon as it is possible to construct a set of local variations.
Also using ideas of [3] and [20], it is possible to construct more general class of local variations for sets under

suitable assumptions.
The assumption of analyticity of the dynamics can be weakened in the spirit of Remark 2.2.

Remark 3.4. If we consider only variations of the form

W 1 := {[gi, gj], i, j = 1 . . . l},

we obtain the result of [17] for regular submanifolds without the additional assumption of continuous balanced
vector fields which is not needed in our setting.

In a similar fashion to that in Proposition 3.2, it is possible to obtain the following:

Corollary 3.5. Let S := {x ∈ R
n, φ(x) ≤ 0} be a compact subset where φ : R

n 7→ R is a C1 function. Let f
and g be analytic and (30) holds true.
Part I. Assume that there exists a Lipschitz continuous negative function b(·) such that

CO

∀x0 ∈ ∂S, min
u∈U

〈∇φ(x0), f(x0) + g(x0)u〉 ≤ b(x0) < 0

Then S is small-time locally attainable.
Part II. Assume that

CO′

∀x0 ∈ ∂S, min
u∈U

〈∇φ(x0), f(x0) + g(x0)u〉 = 0

and that for any x0 ∈ ∂S, there exists some neighborhood B(x0, r) of x0 on which the following conditions hold
true:
C1 There exist some constant C > 0, d > 0 such that

‖f(x)‖ ≤ C(φ(x))d, ∀x ∈ cl(B(x0, r)\S) (33)

C2 There exists a Lipschitz continuous function b(·) : cl(B(x0, r)\S) 7→ R− and w(·) : cl(B(x0, r)\S) 7→ R
n

such that w ∈ co W and for every point x ∈ cl(B(x0, r)\S)

〈∇φ(x), w(x)〉 ≤ b(x) < 0.

Then the set S is small-time locally attainable.
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This corollary is a direct consequence of Proposition 3.3 and Theorem 3.4, when our approach of local
variations is used in a first order Taylor expansion of φ.

When S is a regular set of the form
S = {x ∈ R

n, φ(x) ≤ 0}
with φ of class C1 or an intersection of such sets one can obtain more explicit condition:

Corollary 3.6. Let S =
⋂

j∈ J {x ∈ R
n, φj(x) ≤ 0} be a compact subset where φj : R

n 7→ R are C1 functions
with nonvanishing gradients on ∂S. Let f and g be analytic and (30) holds true. For any x0 ∈ ∂S, denote

J(x0) := {j ∈ J, φj(x0) = 0}·

Assume that conditions C1 and conditions CO, CO′, C2 with φ replaced with φj for any j ∈ J(x0) hold true.
Then the same conclusions as in Corollary 3.5 are valid.

Remark 3.5. As in Remark 3.1, one can easily obtain a sufficient condition using second order Taylor expansion
of φ when it is regular enough. As an illustration of this fact, we give the following example in R

2. The set

S := {(x, y) | y ≤ x2 }

is STLA for the control system

(x′(t), y′(t)) = (u(t), 0), u(t) ∈ [−1, 1].

From previous results, we can derive regularity of the minimal time for reaching S.

3.3. Minimal time to reach a set

Note that the minimal time function is in general only lower semicontinuous [6], see also [24] for conditions
insuring the Lipschitz continuity.

Let Θ(x0) be the minimal time τ for which there exists a solution y(·) to (28) starting from x0 and reaching
S in time τ , namely x(τ) ∈ S.

Corollary 3.7. Suppose that the Assumptions A1–A5 of Theorem 3.1 hold. Then

Θ(x) ≤ const. dS(x)
1
α (34)

for every x from some neighborhood of x0. Moreover Θ is 1
α - Hölder continuous in this neighborhood of x0.

Proof. Fix x in B(x0, r) \ S. In the same manner to that in Theorem 3.1, starting from x there exists some
trajectory such that dS(x(t)) = 0 for t satisfying (24). In the present corollary, the fact that the functions c, dS

are Lipschitz continuous and equal to 0 on ∂S so (25) implies that for any πx ∈ NPS(x),

Θ(x) ≤ C‖x − πx‖ 1
α ,

which gives (34) (where C > 0 is a constant).
Repeating arguments of [3], we shall prove the Hölder continuity. Let y1 and y2 be elements of B(x0, r/m)

where m > 0 is a constant we choose later on.
Suppose Θ(y1) ≤ Θ(y2). Fix ε > 0. There exists a control uε such that the trajectory x1(·) to (28) starting

from y1 reach S in some time τ with
Θ(y1) ≤ τ ≤ Θ(y1) + ε.
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Denote by x2(·) the solution to

x′(t) = f(x(t)) + g(x(t))uε(t), t ∈ [0, τ ], x(0) = y2.

Choose m > 0 large enough such that x2(τ) ∈ B(x0, r).

Grönwall’s Lemma yields the existence of some K > 0 such that

‖x1(τ) − x2(τ)‖ ≤ K‖y1 − y2‖.

By (34),

Θ(x2(τ)) ≤ C.dS(x2(τ))
1
α ,

so
Θ(y2) ≤ τ + Θ(x2(τ)) ≤ Θ(y1) + ε + C.dS(x2(τ))

1
α ≤ Θ(y1) + C.‖x1(τ) − x2(τ)‖ 1

α + ε

(because x1(τ) ∈ S)
≤ Θ(y1) + C.(K‖y1 − y2‖) 1

α + ε.

Since Θ(y1) and Θ(y2) do not depend on ε, we obtain that

Θ(y2) ≤ Θ(y1) + C.K
1
α ‖y1 − y2‖ 1

α .

Symmetric arguments when Θ(y2) ≤ Θ(y1) complete the proof. �

4. Necessary and sufficient small-time local attainability conditions

This section is devoted to linear and polynomial control systems. We show that in this context necessary
and sufficient attainability condition can be obtained. In both cases the set S will be the following hyperplane
going through the origin and normal to a given vector n ∈ R

n \ {0}

H := {x ∈ R
n : 〈n, x〉 = 0}·

4.1. Linear control systems

Let us consider the following linear control system on R
n:

x′(t) = Ax(t) +
m∑

i=1

uibi, u := (u1, ..., um) ∈ R
m, (35)

where A is a constant matrix of dimension n×n and b1 ∈ R
n, i = 1, 2, ..., m. To study the problem of attainability

of the set H with respect to the control system (35), one can use the approach described in previous sections.
But, exploiting the linearity of the system, we shall obtain a necessary and sufficient condition in a more direct
way. In fact, we prove the following:

Proposition 4.1. The hyperplane H is locally attainable with respect to the control system (35) if and only if
there exist a positive integer k and a vector u0 = (u0, ..., u0

m) such that〈
n, Ak

(
m∑

i=1

u0
i bi

)〉
6= 0. (36)
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Proof. Sufficiency: Let us assume that the condition (36) holds true. Let us denote by b =
∑m

i=1 u0
i bi and define

the matrix P by

Px := Ax − ρ.
〈
n, Ak+1x

〉
b, where ρ :=

1
〈n, Akb〉 ·

One can directly check that the following relations hold true:〈
n, AkPx

〉
= 0 for every x ∈ R

n, (37)

〈
n, P ib

〉
= 0 for i 6= k, and

〈
n, P kb

〉
=
〈
n, Akb

〉 · (38)

Let y be an arbitrary point which does not belong to H . Take an arbitrary c > 0 and an integrable function
v(.) : [0, 1] → R

+ for which

∫ 1

0

(1 − θ)k

k!
v(θ)dθ = 1, and set vc

t (s) = c.v
(s

t

)
, s ∈ [0, t]. (39)

Let us consider the solution xc
t (.) of

x′(s) = Px(s) + vc
t (s)b, x(0) = 0, s ∈ [0, t], t > 0. (40)

By the definition of P , xc
t(s) is a trajectory of (35) and

xc
t(s) = Exp(sP )y +

∫ s

0

Exp((s − θ)P )bvc
t (θ)dθ, s ∈ [0, t]. (41)

By setting τ := θ/t and ω := s/t , we obtain that
∫ s

0

Exp((s − θ)P )bvc
t (θ)dθ = c.t.

∫ ω

0

Exp(t(ω − τ)P )bv(τ)dτ.

Then

xc
t(t) =

∞∑
i=0

c.βi.t
i+1P ib,

where

βi :=
∫ 1

0

(1 − θ)i

i!
v(θ)dθ.

The point xc
t(t) belongs to H if and only if the equality 〈n, xc

t(t)〉 = 0 holds true. According to (37) and (38)
we have

〈n, xc
t(t)〉 = 〈n, Exp(tP )y〉 +

∞∑
i=0

c.ti+1.βi.
〈
n, P ib

〉
= 〈n, Exp(tP )y〉 + c.tk+1.

〈
n, P kb

〉 ·
By setting

c := − 〈n, Exp(tP )y〉
c.tk+1. 〈n, P kb〉 ,

we obtain that xc
t(t) belongs to H .

Necessity: we assume that〈
n, Akbi

〉
= 0 for all i = 1, 2, .., m, and k = 1, 2, ... (42)
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First, let us assume that the hyperplane H is invariant under the mapping A, i.e. AH ⊂ H . This implies that
A∗n = γn for some real γ (by A∗ we have denoted the transposed matrix of the matrix A). Let us choose the
point n which does not belong to the hyperplane H . Let x(·) be an arbitrary trajectory of (35) starting from
the point n, i.e.

x(t) = Exp(tP )n +
m∑

i=1

∫ s

0

Exp((t − θ)A)bivi(θ)dθ. (43)

Then

〈n, x(t)〉 = 〈n, Exp(tA)n〉 +
m∑

i=1

〈
n,

∫ s

0

Exp((t − θ)A)bivi(θ)dθ

〉
=

(accordingly to (42))

=
∞∑

i=0

〈
tk

k!
(A∗)kn, n

〉
+ 0 =

∞∑
i=0

γktk

k!
|n|2 = etγ |n|2 > 0,

i.e. x(t), does not belong to H for every t ≥ 0 .
Next, we assume that the hyperplane H is not invariant with respect to the matrix A. This implies the

existence of a point x0 ∈ H for which 〈n, Ax0〉 > ε > 0. Then there exists a positive number δ such that
〈n, Ax〉 > ε > 0 for every x ∈ B(x0, δ) \ H . Starting from an arbitrary point from x ∈ B(x0, δ) \ H for which
〈n, x〉 > 0, the corresponding trajectory can not reach H without leaving the set B(x0, δ). But this implies
that the set H is not small-time locally attainable with respect to the trajectories of the system (35). �

Example 4.1. Let ε > 0 be an arbitrary real number. We set H := {(x, y) : x = 0} and consider the following
two-dimensional control system

x′ = +y, x(0) = sin
(π

2
− ε
)

y′ = −x, y(0) = cos
(π

2
− ε
)

.

One can directly check that if ε > 0 is sufficiently small, then the trajectory starting from a point, which is
sufficiently closed to (x(0), y(0)), go away from the set H , and then, after a finite time, this trajectory reaches H .

4.2. Polynomial control systems

Next, we consider the following polynomial control system on R
n:

x′(t) = P (x(t)) +
m∑

i=1

ui(t)bi, u ∈ R
m, (44)

where P : R
n → R

n. As in [13], we shall assume the existence of an odd positive integer p such that if P =
(P1, ..., Pn), then each coordinate Pi, i = 1, ..., n, is a homogeneous polynomial with respect to the coordinates
x = (x1, ..., xn) of degree p, i.e. Pi(λx) = λpPi(x), i = 1, ..., n. The system (44) is from the so called class of
odd nonlinear systems (cf. [5]). To study the problem of attainability of the set H with respect to the control
system (44), we use the approach described in the previous sections and we prove a sufficient and necessary
condition.

Proposition 4.2. Let BP be the smallest vector space containing the vectors b1, ..., bm, and which is invariant
under the mapping P . Then the hyperplane H is locally attainable with respect to the control system (44) if and
only if there exists an element b of BP such that

〈n, b〉 6= 0. (45)
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Proof. Sufficiency: define R(x, t) to be the closure of the union of reachable sets of the system (44) from the
point x at times τ ≤ t, i.e.

R(x, t) := cl

( ⋃
τ∈[0,t]

{x(τ) |where x(·) is a solution to (44) with x(0) = x }·

Let t > 0 and s > 0 be arbitrary reals and i be an arbitrary index, 1 ≤ i ≤ m. Since

Exp
(

t

n

(
P ± sn

t
bi

))
(x) ∈ R

(
x,

t

n

)
⊂ R (x, t) ,

we obtain after taking a limit n → ∞ that

Exp (±sbi)) (x) ∈ R (x, t) .

This means that bi ∈ Sfast, i = 1, 2, ..., m. Proposition 2.5 implies that the vector space L spanned by the vectors
bi, i = 1, 2, ..., m, is a subset of Sfast. Let b ∈ L be an arbitrary vector. Considered as a constant vector field,
we have according to the homogenety of P that (adk b, P ) ≡ 0 for all k > p. Hence, applying Proposition 2.6,
we obtain that ±P (b) = (adpb, P ) ∈ Sfast. From here we can conclude that the set BP ⊂ Sfast. Let y be an
arbitrary point which does not belong to H . Without loss of generality, we may assume that 〈n, y〉 < 0. Since
BP is a linear subspace, the assumption (45) implies the existence of b ∈ BP such that 〈n, b〉 > 0. Application
of Theorem 3.1 with A(y) ≡ b and a(t; x) ≡ 0 implies that R(y, t) ∩ Hε 6= ∅, where Hε := {z ∈ Rn| 〈n, z〉 > ε}
and ε > 0 is a sufficiently small. But this implies the existence of a trajectory of the system (44) reaching H at
some moment of time not greater than t.

Necessity: let for all b ∈ BP we have that

〈n, b〉 ≡ 0. (46)

First, let us assume that the hyperplane H is invariant under the mapping P , i.e. P (x) ∈ H for every point x
from H . The assumptions on P and the assumption (46) imply that the set H is invariant with respect to the
trajectories of the following control system:

x′(t) = −P (x(t)) +
m∑

i=1

ui(t)bi. (47)

So, if we assume the existence of a trajectory of (44) starting from a point x 6∈ H and reaching H at some point
y, then this implies the existence of a trajectory of the system (47) starting from y and reaching the point x.
This contradicts the invariance property of the set H with respect to (47) and completes the proof in this case.

Next, we assume that the hyperplane H is not invariant with respect to the mapping P . This implies the
existence of a point x0 ∈ H for which 〈n, P (x0)〉 > ε > 0. Then there exists a positive number δ such that
〈n, P (x)〉 > ε > 0 for every x ∈ B(x0, δ) \H . Starting from an arbitrary point from x ∈ B(x0, δ) \H for which
< n, x > > 0, the corresponding trajectory can not reach H without leaving the set B(x0, δ). But this means
that the set H is not small-time local attainable with respect to (47). �

References

[1] A. Agrachev and R. Gamkrelidze, The exponential representation of flows and the chronological calculus. Math. USSR
Sbornik 35 (1978) 727-785.

[2] A. Bacciotti and G. Stefani, Self-accessibility of a set with respect to a multivalued field. JOTA 31 (1980) 535-552.
[3] R. Bianchini and G. Stefani, Time optimal problem and time optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48

(1990) 401-429.



516 M. KRASTANOV AND M. QUINCAMPOIX
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[16] G. Lebourg, Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. I Math. 281 (1975) 795-797.
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