Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
Compositio Mathematica, Tome 102 (1996) no. 2, pp. 179-202.
@article{CM_1996__102_2_179_0,
     author = {Etingof, Pavel I. and Kirillov, Jr., Alexander A.},
     title = {Representation-theoretic proof of the inner product and symmetry identities for {Macdonald's} polynomials},
     journal = {Compositio Mathematica},
     pages = {179--202},
     publisher = {Kluwer Academic Publishers},
     volume = {102},
     number = {2},
     year = {1996},
     mrnumber = {1394525},
     zbl = {0859.17005},
     language = {en},
     url = {http://www.numdam.org/item/CM_1996__102_2_179_0/}
}
TY  - JOUR
AU  - Etingof, Pavel I.
AU  - Kirillov, Jr., Alexander A.
TI  - Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
JO  - Compositio Mathematica
PY  - 1996
SP  - 179
EP  - 202
VL  - 102
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1996__102_2_179_0/
LA  - en
ID  - CM_1996__102_2_179_0
ER  - 
%0 Journal Article
%A Etingof, Pavel I.
%A Kirillov, Jr., Alexander A.
%T Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials
%J Compositio Mathematica
%D 1996
%P 179-202
%V 102
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1996__102_2_179_0/
%G en
%F CM_1996__102_2_179_0
Etingof, Pavel I.; Kirillov, Jr., Alexander A. Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials. Compositio Mathematica, Tome 102 (1996) no. 2, pp. 179-202. http://www.numdam.org/item/CM_1996__102_2_179_0/

[AI] Askey, R. and Ismail, Mourad E.-H.: A generalization of ultraspherical polynomials, Studies in Pure Math. (P. Erdös, ed.), Birkhäuser, 1983, pp. 55-78. | MR | Zbl

[C1] Cherednik, I.: Double affine Hecke algebras and Macdonald's conjectures, Annals of Math. 141 (1995) 191-216. | MR | Zbl

[C2] Cherednik, I.: Macdonald's evaluation conjectures and difference Fourier transform, preprint, December 1994, q-alg/9412016. | Zbl

[CK] De Concini, C. and Kac, V.G.: Representations of quantum groups at roots of 1, Operator algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (A. Connes et al, eds.), Birkhäuser, 1990, pp. 471-506. | MR | Zbl

[D] Drinfeld, V.G.: Quantum groups, Proc. Int. Congr. Math., Berkeley, 1986, pp. 798-820 | MR | Zbl

[EK1] Etingof, P.I. and Kirillov, A.A., Jr.: On a unified representation-theoretic approach to the theory of special functions, Funktsion. analiz i ego prilozh. 28 (1994) no. 1, 91-94 (in Russian). | MR | Zbl

[EK2] Etingof, P.I. and Kirillov, A.A., Jr.: Macdonald's polynomials and representations of quantum groups, Math. Res. Let. 1 (1994) no. 3, 279-296. | MR | Zbl

[ES] Etingof, P.I. and Styrkas, K.: Algebraic integrability of Schrödinger operators and representations of Lie algebras, preprint, hep-th/9403135 (1994), to appear in Compositio Math. | Numdam | MR | Zbl

[J] Jimbo, M.A.: A q-difference analogue of Ug and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 62-69. | MR | Zbl

[L] Lusztig, G.: Introduction to quantum groups, Birkhäuser, Boston, 1993. | MR | Zbl

[M1] Macdonald, I.G.: A new class of symmetric functions, Publ. I.R.M.A. Strasbourg, 372/S-20, Actes 20 Séminaire Lotharingien (1988), 131-171. | Zbl

[M2] Macdonald, I.G.: Orthogonal polynomials associated with root systems, preprint (1988). | MR

[RT1] Reshetikhin, N. and Turaev, V.: Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1-26. | MR | Zbl

[RT2] Reshetikhin, N. and Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups, Inv. Math. 103 (1991) 547-597. | MR | Zbl

[T] Tanisaki, T.: Killing forms, Harish-Chandra isomorphisms and universal R-matrices for quantum algebras, Infinite Analysis, part A and part B (Kyoto, 1991), Adv. Ser. Math. Phys. 17, World Scientific, pp. 941-961. | MR | Zbl