@article{CM_1996__102_2_179_0, author = {Etingof, Pavel I. and Kirillov, Jr., Alexander A.}, title = {Representation-theoretic proof of the inner product and symmetry identities for {Macdonald's} polynomials}, journal = {Compositio Mathematica}, pages = {179--202}, publisher = {Kluwer Academic Publishers}, volume = {102}, number = {2}, year = {1996}, mrnumber = {1394525}, zbl = {0859.17005}, language = {en}, url = {http://www.numdam.org/item/CM_1996__102_2_179_0/} }
TY - JOUR AU - Etingof, Pavel I. AU - Kirillov, Jr., Alexander A. TI - Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials JO - Compositio Mathematica PY - 1996 SP - 179 EP - 202 VL - 102 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1996__102_2_179_0/ LA - en ID - CM_1996__102_2_179_0 ER -
%0 Journal Article %A Etingof, Pavel I. %A Kirillov, Jr., Alexander A. %T Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials %J Compositio Mathematica %D 1996 %P 179-202 %V 102 %N 2 %I Kluwer Academic Publishers %U http://www.numdam.org/item/CM_1996__102_2_179_0/ %G en %F CM_1996__102_2_179_0
Etingof, Pavel I.; Kirillov, Jr., Alexander A. Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials. Compositio Mathematica, Tome 102 (1996) no. 2, pp. 179-202. http://www.numdam.org/item/CM_1996__102_2_179_0/
[AI] A generalization of ultraspherical polynomials, Studies in Pure Math. (P. Erdös, ed.), Birkhäuser, 1983, pp. 55-78. | MR | Zbl
and :[C1] Double affine Hecke algebras and Macdonald's conjectures, Annals of Math. 141 (1995) 191-216. | MR | Zbl
:[C2] Macdonald's evaluation conjectures and difference Fourier transform, preprint, December 1994, q-alg/9412016. | Zbl
:[CK] Representations of quantum groups at roots of 1, Operator algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (A. Connes et al, eds.), Birkhäuser, 1990, pp. 471-506. | MR | Zbl
and :[D] Quantum groups, Proc. Int. Congr. Math., Berkeley, 1986, pp. 798-820 | MR | Zbl
:[EK1] On a unified representation-theoretic approach to the theory of special functions, Funktsion. analiz i ego prilozh. 28 (1994) no. 1, 91-94 (in Russian). | MR | Zbl
and :[EK2] Macdonald's polynomials and representations of quantum groups, Math. Res. Let. 1 (1994) no. 3, 279-296. | MR | Zbl
and :[ES] Algebraic integrability of Schrödinger operators and representations of Lie algebras, preprint, hep-th/9403135 (1994), to appear in Compositio Math. | Numdam | MR | Zbl
and :[J] A q-difference analogue of Ug and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 62-69. | MR | Zbl
:[L] Introduction to quantum groups, Birkhäuser, Boston, 1993. | MR | Zbl
:[M1] A new class of symmetric functions, Publ. I.R.M.A. Strasbourg, 372/S-20, Actes 20 Séminaire Lotharingien (1988), 131-171. | Zbl
:[M2] Orthogonal polynomials associated with root systems, preprint (1988). | MR
:[RT1] Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1-26. | MR | Zbl
and :[RT2] Invariants of 3-manifolds via link polynomials and quantum groups, Inv. Math. 103 (1991) 547-597. | MR | Zbl
and :[T] Killing forms, Harish-Chandra isomorphisms and universal R-matrices for quantum algebras, Infinite Analysis, part A and part B (Kyoto, 1991), Adv. Ser. Math. Phys. 17, World Scientific, pp. 941-961. | MR | Zbl
: