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Introduction

This paper is a continuation of our papers [EK1, EK2]. In [EK2] we showed that for
the root system An- 1 one can obtain Macdonald’s polynomials - a new interesting
class of symmetric functions recently defined by I. Macdonald [M1] - as weighted
traces of intertwining operators between certain finite-dimensional representations
of Uqsln. The main goal of the present paper is to use this construction to give a
representation-theoretic proof of Macdonald’s inner product and symmetry iden-
tities for the root system An-1. Macdonald’s inner product identities (see [M2])
have been proved by combinatorial methods by Macdonald (unpublished) for the
root system An- and by Cherednik [Cl] in the general case; symmetry identities
for the root system An- 1 have been proved by Koomwinder (unpublished). Again,
recently Cherednik proved these identities for arbitrary root systems ([C2]).

The paper is organized as follows. In Section 1 we briefly list the basic defini-
tions. In Section 2 we define Macdonald’s polynomials PA and recall the construc-
tion of PA and the inner product between them for the root system An- in terms
of intertwining operators. By definition, (PA, Pm) = 0 if 03BB ~ y, and we show that
(PA, PÀ) can be expressed as a certain matrix element of product of two intertwin-
ing operators. In Section 3 we use the Shapovalov determinant formula to analyze
the poles of matrix coefficients of an intertwining operator, and this allows us to
express the product of two intertwining operators in terms of a single intertwiner.
Applying this to the formula for (PÀ, PA) obtained in Section 2, we prove the Mac-
donald’s inner product identity, and the right-hand side is obtained as a product
of linear factors in Shapovalov determinant formula. In Section 4 we prove the
symmetry identity, which relates the values of P03BB(q2(03BC+kp)) and P03BC(q2(03BB+kp); the
proof is based on the construction of Section 2 and the technique of representing
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identities in the category of representations of a quantum group by ribbon graphs
([RTl, RT2]). In Section 5 we use the symmetry identities and the fact that Mac-
donald polynomials are eigenfunctions of certain difference operators (Macdonald
operators) to derive recurrence relations for Macdonald polynomials.

1. Basic definitions

We adopt the following conventions: g is a simple Lie algebra over C of rank r,
b C g is its Cartan subalgebra, R C b* is the corresponding root system, R+ is
the subset of positive roots, 03B11,..., ar e R+ is the basis of simple roots, 0 is the
highest root. We also introduce the root lattice Q = ~ Z03B1i and the cone of positive
roots Q+ = ~ Z+03B1i.
We fix an invariant bilinear form ( , ) on g by the condition that for the associated

bilinear form on b* we have di = (ai, 03B1i)/2 E Z+, g.c.d. (di) = 1 ; this form allows
us to identify b* ~ b:03BB ~ h03BB. Abusing the language, we will often write, say, q03BB
instead of qh03BB.

For every a ~ R we define the dual root 03B1v = 2h03B1 (03B1,03B1) Let P = {03BB E
b*|~03BB,03B1v~ ~ Z} be the weight lattice, and P+ = {03BB ~ b*|~03BB, 03B1vi~ E Z+l be
the cone of dominant weights. Let p = 2 ¿aER+ 03B1; then (p, 03B1vi~ = 1 and thus
p e P+. Denote by W the Weyl group for the root system R and by C[P] the
group algebra of the weight lattice, which is spanned by the formal exponentials
eBA E P. Then W naturally acts on P and on C[P]. Note that in every W-
orbit in P there is precisely one dominant weight; this implies that the orbitsums
MA = EmewA e03BC, 03BB ~ P+ form a basis of C[P]W. Finally, we can introduce
partial order in P: we let 03BB  03BC if 03BC - 03BB ~ Q+.

Let Uq g be the quantum group corresponding to g (see [D, J] for definitions). We
will use precisely the same form of Uq g as we did in [EK2] for gl,,; in particular, we
always consider q as a formal variable and consider Uq g and its representations as
vector spaces over Cq = C(q1/2N), where N = |P/Q| (we need fractional powers
of q to define comultiplication and braiding). We will also use the following notions
which have been discussed in more detail in [EK2].
We define a polarization of Uq g in the usual way: Uq g = U+. U0. U- . For every

À ~ b* we denote by MA the Verma module over Uq g and by L03BB the corresponding
irreducible highest-weight module. If À e P+ then LÀ is finite-dimensional. All
highest weight modules over Uq g have weight decomposition; we will write V[03B1]
for the subspace of homogeneous vectors of weight a e b* in V.

For every finite-dimensional representation V of Uq g we define the action of
Uq g on the space V* of linear functionals on V by the ruie ~xv*, v~ = ~v*, S(x)v~
for v E V, v* E V*, x e Uqg, where S is the antipode in Uqg. This endows
V* with the structure of a Uq g representation which we will call the right dual
to V. In a similar way, the left dual *V is the representation of Uq g in the space
of linear functionals on V defined by ~xv*,v~ = ~v*, S-1 (x)v~. Then the following
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natural pairings and embeddings are Uqg-homomorphisms:

Note that V* and *V, considered as two structures of a representation of Uq g
on the same vector space, do not coincide, but they are isomorphic. Namely,
q-2p: *V~ V * is an isomorphism. Note also that if V = L03BB is an irreducible

finite-dimensional representation, so is V*: L*03BB ~ L x* , where 03BB* = -w0(03BB). wo
being the longest element in the Weyl group.

It is known that if V, W are finite-dimensional then the representations V 0 W
and W 0 V are isomorphic, but the isomorphism is non-trivial. More precisely (see
[D, T]), there exists a universal R-matrix R e Uq g é Uq g (0 should be understood
as a completed tensor product) such that

is an isomorphism of representations. Here P is the transposition: Pv~ w = w (D v.
Also, it is known that R has the following form

where 03B5 : Uqg - Cq is the counit, and hi is an orthonormal basis in
Similarly to the classical case, one can introduce an involutive algebra auto-

morphism 03C9:Uqg ~ Uqg which transposes U+ and U-: 03C9(ei) = fi, 03C9(fi) =
-ei,w(h) = -h. This is a coalgebra antiautomorphism. Thus, for every repre-
sentation V we can define a new representation V’ of Uq g in the same space by
the formula 7rV(.c) (x) = 03C0V(wx). If v E Y, we will write VW for the same vector
considered as an element of Vw. If V is finite-dimensional then Vw ~ *V (though
the isomorphism is not canonical); in other words, there exists a non-degenerate
pairing (·,·)V: V 0 V ----1- Cq such that (xv, v’)V = (v, wS(x)v’)v, which is called
the Shapovalov form. This form is symmetric. If V = La is irreducible, we will
fix this form by the condition that ( va, v03BB) = 1. Note that if vi , vi are dual bases
in V with respect to Shapovalov form then 1A - q2(03BB,03C1)(q-203C1 0 1) LVi 0 vi is an
invariant vector in V 0 Yw such that 103BB = VÀ 0 v03C903BB + lower terms (by lower terms
we always mean terms of lower weight in the first component).

The involution 03C9 can be extended to intertwiners: if 4l: La - Lv ~ U is an
intertwiner such that 03A6(v03BB) = vv ~ uo + lower terms for some uo E U then we
can define the intertwiner 03A6w = P o 03A6: Lw03BB ~ UW ~ L§£, where P is transposition
of Uw and Lwv. Obviously, 03A6w(vw03BB) = uw0 ~ vv + lower order terms (note that v.
is a lowest weight vector in Lw03BB).

Finally, we will use the technique of representing homomorphisms in the cat-
egory of finite-dimensional representations of Uq g by ribbon graphs, developed
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in [RTI, RT2]. For the sake of completeness we briefly recall the basics of this
technique in the Appendix.

2. Macdonald’s polynomials and inner product

Let us briefly recall the definition of Macdonald’s polynomials and their construc-
tion for root system An- 1 in terms of intertwining operators, following the paper
[EK2]. Let us fix k E Z+.

THEOREM 2.1 (Macdonald). There exists a unique family of symmetric trigono-
metric polynomials pA (q qk) E C(q)[P]W labeled by the dominant weights A E
P+ such that

2. For fixed q, k the polynomials P03BB(q, qk) are orthogonal with respect to the
inner product given by ( f, g) k = 1 |W| [fg0394q,qk]0, where the bar conjugation is
defined by e03BB = e-À , [ ]0 is the constant term of a trigonometric polynomial (i.e.,
coefficient at eo), and

In our paper [EK2] we showed how these polynomials for the root system An- 1
can be obtained from the representation theory of Uqsln. We briefly repeat the main
steps here.

From now till the end of this section, we consider only the case g = sln. Consider
intertwining operators

where U k-1 1 = S(k-1)nCn is the q-deformation of symmetric power of fundamental
representation of Uqsln; it can be realized in the space of homogeneous polynomials
of degree n(k-1) in xl, ... , xn (see formula (3.5) below). If À E P+ then such an
intertwiner exists and is unique up to a constant factor. We fix it by the condition
03A603BB(v03BBk) = v03BBk ~ U k-1 1 + ... , where uk-10 1 = (x1...xn)k-1 E Uk-1 [0] and
Ak = À + (k - 1 )p. Define the corresponding ’generalized character’

This is an element of Cq[P] ~ Uk-1[0]. Since Uk-1[0] is one-dimensional, it
can be identified with C so that uk-i F-+ 1, and thus, XA can be considered as a

complex-valued polynomial. Sometimes we will symbolically write X = Tr(03A6eh)
as an abbreviation of the formula above.
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THEOREM 2.2. ([EK2])

2. xa is divisible by Xo, and the ratio is a symmetric polynomial.
3. XÀ/Xo is the Macdonald’s polynomial PA (q, qk).
Our main goal is to find an explicit formula for (PA, P03BB~k. To do it, note first

that it follows from Part 1 of the theorem above that xoxo0q,q = 0394q,qk and thus

Now, it is easy to see from the definition that XAXA - Tr(BII eh), where 03A8 is the
following composition

where, as before, Ak = 03BB + (k - 1)p. Since the module LAk 0 Lw03BBk is completely
reducible, Tr(03A8eh) is just a linear combination of the usual characters of irreducible
components in L Àk 0 Lw03BBk. On the other hand, since the characters for the quantum
group are the same as for the classical Lie algebra, and Oq,q = TIaER( 1 - ea )
does not depend on q, we know that 1 |W| [(ch L03BC)0394q,q]0 = 03B4u,0, where ch L is the
character of the module L considered as an element of C[P] (this can be used to
prove the orthogonality of Pua)’ Thus, (XÀ, XÀ) equals the eigenvalue of 03A8 on the
component in L Àk 0 Lw03BBk which is isomorphic to the trivial representation Cq. This
gives the following lemma.

LEMMA 2.3. The value of the inner product AÀ == (PÀ, P03BB~k can be calculated
from the identity

where IF is defined by (2.3) and 1A is an invariant vector in L03BBk ~ Lw03BBk.

THEOREM 2.4.

where, as before, 03BBk = 03BB + (k - 1 )03C1, ( )Uk-1: Uk-1 ~ Uwk-1 1 ~ Cq is the map given
by the Shapovalov form in Uk-1, and the intertwiner 03A6o03BB: L03BBk ~ L03BBk 0 Uk-1 is
defined by the condition 03A6003BB(v03BBk) = v03BBk 0 (uk-10 )w+ lower order terms.
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Proof. The proof is obvious if we use the technique of ribbon graphs. Namely,
it follows from Lemma 2.3 that the inner product (PÀ, P03BB~k = Aa can be defined
from the following identity of ribbon graphs

where dimq L = TrL(q-203C1), ~: L*03BBk ~ LA, *, 0: Ln(k-1)w*1~ L*n(k-1)w1 = U*k-1
are isomorphisms and 03C8 is chosen so that ~uk-10, 03C8(uk-10 )W) = 1. It is easy to check
that

and thus,
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so

3. Algebra of intertwiners and the inner product identity

In this section we consider intertwiners of the form

where M03BB is the Verma module over Uqg, L03BC is the finite-dimensional irreducible
module; we assume that 03BC E P+ ~ Q, so L03BC[0] ~ 0. Let u E L03BC[0]. We consider
all the modules over the field of rational functions Cq = C(q1/2N) (see Section 1);
if À is not an integral weight then we also have to add q~03BB,03B1vi~/2N to this field.

It is known that if Ma is irreducible then there exists a unique intertwiner of the
form (3.1) such that 03A603BC03BB(v03BB) = v03BB Q9 u + lower order terms. We will dénote this

intertwiner by 03A603BC,u03BB. The same is true if we consider the weight À as indeterminate,
i.e. if we consider ti = q~03BB,03B1vi~/2N as algebraically independent variables over
Cq.

Let us identify M03BB with U- in a standard way. Then we can say that we have
a family of actions of Uq g in the same space M ~ U- , and thus we have a family
of intertwiners 03A603BC,u03BB: M - M Q9 L03BC, defined for generic values of À.

For À E b*, let us call a trigonometric rational function of À a rational function
in qI/2N,qÀ/2N (that is, in q1/2N and ti = q~03B1vi,03BB~/2N, i = 1,..., n) and call a
trigonometric polynomial in À a polynomial in q±03BB/2N with coefficients from Cq .
Note that the ring of trigonometric polynomials is a unique factorization ring, and
invertible elements in this ring are of the form c(q)q~03BB,03B1~, Q E 1 2NQv.
LEMMA 3.1. For fixed J-L E P+, U E L03BC[0], u ~ 0 we have the following state-
ments.

(1) Let À E b* be such that M03BB is irreducible. Then there exists a unique
intertwining operator 03A603BC,u03BB: M03BB ~ MÀ Q9 Lu such that 03A603BC,u03BB(v03BB) = VÀ Q9 U + ....
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Its matrix elements are trigonometric rational functions of À. Moreover, we have
the following formula for 4)vA:

where gk is a homogeneous basis in U-, F-1 is the inverse matrix to the Shapovalov
form in MA, and as in Section 1, q03BB|V[v] = q(03BB,v)IdV[v].

(2) Define the operator 03BC,u03BB by

where

Then matrix elements of 03BC,u03BB are trigonometric polynomials, i. e. have no poles;
thus, 03BC,u03BB is well de, fined for all 03BB.

(3) Consider the special case g = y - kn03C91. Recall that in this case
L03BC[0] is one-dimensional. Let u be a non-zero vector in L03BC[0]. Then d03BC(03BB) is the
least common denominator of matrix elements of 03A603BC,u03BB; in other words, in this case
matrix elements of 03BC,u03BB do not have non-trivial common divisors.

Proof. The proof is essentially the same as in the classical case, which is given
in [ES]; however, we repeat it here marking necessary changes. To prove (1),
it suffices to check that the vector in the right-hand side is the unique highest-
weight vector of weight A in MA 0 L,, of the form v = va 0 u + .... Suppose
v E M.B 0 L03BC is of the form above. Define Ei = eiqdihi/2; then v is highest-
weight iff 0394Eiv = 0. On the other hand, explicit calculation shows that 0394Ei =
Et 0 1 - q2di (1 0 SEi)qdihi 0 qdihi . Thus,

For x E M03BB, w E M03BB~L03BC define(x,w) by (x, w1~w2) = (x,w1)M03BB w2 ~ Lm.
If M03BB is irreducible, Shapovalov form in M03BB is non-degenerate, and therefore,
w = 0 v ( x , w) = 0 for all x e Mx . Therefore, we can rewrite the condition that
v is a highest-weight vector as follows
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It is easy to see that the last condition is equivalent to the following: for any
homogeneous F E U-, we have

This proves that the highest-weight vector of the desired form exists and is
unique. It is easy to check that the vector given by (3.2) satisfies the condition
above.

To prove (2), note that it follows from (3.2) that matrix coefficients of (b may
have poles only at the points where the determinant of Shapovalov form vanishes.
The formula for the determinant of the Shapovalov form in the quantum case can be
found in [CK], and the factors occurring there are precisely the factors in formula
(3.4) (up to invertible factors). One can check in the same way as it is done in [ES]
for q = 1 - that is, by comparing the order of pole of the matrix of Shapovalov
form and its minors - that in fact all the poles of F-1 are simple.

The restriction on i in (3.4) appears because the coefficients (F-1)kl which may
have poles of the form (3.4) with i &#x3E; n03B103BC appear with zero coefficient.

To prove (3), it suffices to check this statement for q = 1, which is also done in
the paper [ES] (note that it is quite non-trivial!). However, we would like to sketch
the proof here. 

Consider the operator 03BB : M03BB ~ MA 0 L03BC (we drop the superscripts p and of
03A6). Take A from the hyperplane Ha,s given by the equation (a, a) = s, where a is a
positive root of g, and s is an integer between 1 and k. Then d03BC(03BB) = 0. Therefore,
if À is a generic point on H03B1,s, the operator 03BB maps MA into M03BB-s03B1 ~ L03BC,
where M03BB-s03B1 is the unique proper nonzero submodule in Mx . In particular, we
can restrict this operator to Ma-Sa, which will yield an intertwining operator
M03BB-s03B1 M03BB-s03B1 0 L03BC. But such an operator has to be proportional to 03A603BB-s03B1.
Therefore, we have

where B03B1,s(03BB) is some Laurent polynomial of q03BB defined on the hyperplane H03B1,s.
By continuity, this identity has to hold for all values of À on this hyperplane,
not necessarily generic ones. Our purpose is to show that the polynomial Ba,s is
nonzero: this will show that  A 7é 0, which means that (DA has a pole on H,,,,.

First of all, it is easy to show that if a is a simple root then B03B1,s(03BB) = qS. This is
checked directly using formula (3.2) and the fact that the highest weight vector of
MMa-sa is fâva. Next, for each non-simple positive root a = ai + ... + aj (i  j),
we choose a weight A to be a solution to the equations
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Then we get

Solving this equation recursively, we get B03B1,s(03BB) = qs(j-i+1) for this particular À.
This implies that Ba,s is not identically zero, as desired.

REMARK. In fact, the identity B03B1,s(03BB) = qs(j-i+1) holds for a general À. How-
ever, this is a little more difficult to prove. 0

REMARK. It is seen from this proof that 03BC,u03BB is actually a trigonometric polyno-
mial in A with operator coefficients, i.e. the degrees of its matrix coefficients, as
trigonometric polynomials, are uniformly bounded (under a suitable definition of
degree).

We will also need one more technical lemma.

LEMMA 3.2. Let us write 03BC,u03BB in the following form

where u,, is the highest-weight vector il1 L03BC, and a(A) E Cq (q±03BB/2N] ~ U-[-03BC] is
a trigonometric polynomial of À with values in the universal enveloping algebra.
Then the greatest common divisor of the components of a(03BB) is 1.

Proof. It is easy to see, using the irreducibility of L03BC, that if a( À) == 0 then
03BC,u03BB = 0. On the other hand, we have shown before that the coefficients of

03BC,u03BB have no nontrivial common divisors, and thus 03BC,u03BB could only vanish on a
subvariety of codimension more than one. Thus, the same must be true for a( À).

Now we want to define a structure of algebra on these intertwiners. Let 03A61: M03BB ~
MA 0 L03BC1, 03A62: M03BB ~ M03BB 0 LI-L2 be non-zero intertwiners. Let us define their prod-
uct 4l j * 03A62: MÀ --+ MA 0 L03BC1+03BC2 as the composition

where x is a fixed projection 7r: L03BC1 ~ LJ-L2 ---+ L03BC1+03BC2.
Let us now consider a very special case of the above situation. From this moment

till the end of this section we only work with g = s[n. Take J1 = knw1 for some
k E Z+, that is, L03BC is the q-analogue of the representation SknCn, where en is

the fundamental representation of sln. This representation can be realized in the
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space of homogeneous polynomials of degree kn in x1,..., xn as follows (see
[EK2]):

In this case all the weight subspaces of L p, are one-dimensional; in particular,
we can choose uk0 = (x1... xn)k E L03BC[0]; then Z03BC[0] = Cq uk0. For brevity, we
will write Uk for Lknw1, 03A6k03BB for 03A603BC=knw1,uk0 03BB, dk(03BB) for d03BC(03BB). etc. Let us fix the
projection 03C0 : Uk ~ Ul ~ Uk+l by 03C0(uk0 ~ ul0) = uk+l0. In this case, n03B103BC = k for all
03B1 E R+, and

THEOREM 3.3.

Proof. Let us denote the left-hand side of (3.7) by W. Then 03A8 is an intertwiner
M03BB ~ M).. (29 Uk+l, whose matrix coefficients are trigonometric polynomials in
03BB. In particular, we can write 03A8(v03BB) = f(03BB)v03BB~ uk+l0 + l.o.t. On the other hand
k+l03BB(v03BB = dk+l(03BB)v03BB ~ Uk+l 0 + l.o.t. Since the intertwining operator is unique for
generic a, this implies 03A8(03BB) = f(03BB) dk+l(03BB)k+103BB. Since the greatest common divisor of
the matrix elements of k+l is 1, this implies that f(À) is divisible by dk+l(03BB).

Let us now consider the lowest term of 03A8. If we write the lowest term of k03BB
as ak(03BB)v03BB~uk (cf. Lemma 3.2) and lowest term of l03BB as al(03BB)v03BB~ul then the
lowest term of 03A8 will be al(03BB)ak(03BB)v03BB ~ uk+l (up to some power of q). Since we
know that components of ak have no common divisors, and the same is true for al, it
follows that the greatest common divisor of components of ak (03BB)al(03BB) is 1. Indeed,
suppose that p(À) is a common divisor of components of ak(03BB)al(03BB). Passing if
necessary to a certain algebraic extension of Cq we get that ak(03BB)al(03BB) vanishes
on a certain subvariety of codimension 1. On the other hand, this contradicts to
the fact that both ak, al could only vanish on subvarieties of codimension more
than one, since Uqg has no zero divisors. Thus, the greatest common divisor of
coefficients of 03A8(03BB) is one, which implies that dk+l(03BB) is divisible by f (A).

This proves that 03A8(03BB) = c(q)q(03BB,03B1)k+l03BB for some a E 1 2n Q and rational
function c(q), independent of À.
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To calculate a, c, let us consider the limit of both sides of (3.7) as 03BB ~ + 03C1~,
i.e. letting ti = q~03BB,03B1vi~/2n = 0.

LEMMA 3.4.

Proof. To prove the lemma, note first that lim k = lim 03A6k. Due to Lemma 3.1,
we can write 03A6(v03BB) = 03A3k,l(F-1)klgkv03BB ~ (wgl)u. It is known that if we choose
a basis gk in such a way that go = 1, gk has strictly negative weight for k &#x3E; 0,
then lim03BB~03C1~(F-1)kl = 8k,08z,0 (this follows, for example, from [L, Proposition
19.3.7], which gives much more detailed information about the asymptotic behavior
of F; it states that under a suitable normalization the Shapovalov form in the Verma
module MA formally converges to the Drinfeld’s form on U- as À - +~03C1). This
proves the lemma.

Using this lemma and the fact that in the identification MA = M ~ U- the
action of U- does not depend on À, one can show that

Comparing it with the expression for lim 03A6k+l(v03BB), we get the statement of the
theorem. 0

COROLLARY 3.5.

So far, we have proved Theorem 3.3 only for the case when k, l E Z+. However,
it can be generalized. Let us consider the space Uk = t(XI ... xn)kp(x), p(x) E
Cq [±11, ... xll], p(x)is a homogeneous polynomial of degree 01, where k is an

arbitrary complex number. Formula (3.5) defines an action of Uqsln in Uk. Also,
define uk = (x1... xn)k E Uk.

LEMMA 3.6.

(1) The set of weights of Uk coincides with the weight lattice Q, and each
weight subspace is one-dimensional. In particular, Ü k [0] - tCq uk0.

(2) For generic k, the mapping
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defines an isomorphism Uk - U-1-k. The normalization is chosen so that uk0 ~
u-1-k0. Here Tq(03BB) is q-gamma function

where

Note that the factors of the form (1 - q2)À in the product in (3.9) cancel, and thus
we can consider this product as a formal power series in q with coefficients which
are rational functions in 9)..’ qk (which we consider as independent variables).

(3) If k E Z+ then Uk contains a finite-dimensional submodule, isomorphic
to the module Uk defined above: Uk = k ~ Cq[x1,... , xn]. Also, in this case
-1-k has a finite-dimensional quotient Uk = Ü-1-k/(XÀsuchthatatleastone
Ài E 2+). In particular, U-1 can be projected onto U0 ~ Cq. Moreover, formula
(3.9) above defines an isomorphism Uk - Uk for k E Z+.

Proof of this lemma is straightforward.

Now, let us assume that A is generic and consider an intertwiner 03A6k03BB: MA
M03BB  k such that 03A6k03BB(v03BB) = VÀ 0 uk0 + ..., and (à is a tensor product completed
with respect to p-grading in MA. Note that if k E Z+ then image of 03A6(v03BB) lies in
the submodule MA 0 Uk (which follows, for example, from the explicit formula
(3.2) for 03A6), so this is consistent with our previous notations. Also, for k E C we
define

which we can consider as a formal power series in q with coefficients that are

rational functions in q03BB, qk (which we consider as independent variables). Note
that if k ~ Z+, this coincides with previously given definition.

THEOREM 3.7. For any k E Z+, l e C we have

where dk(03BB) is given by formula (3.10).
Proof. Let us fix k. Then the matrix elements of the operators on both sides of

(3.11) are rational functions in q, ql , q03BB, which follows from the fact that dk+l(03BB) dk(03BB)dl(03BB)
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is a rational function in q, ql, q03BB. Now the statement of the Theorem follows from
the fact that this is true for 1 e Z+ and the following trivial statement:
If F(q, t) E C(q, t) is such that F(q, ql) = 0 for all 1 e z+ then F = 0. 0

Let us apply this to case when 1 = -1 - k. In this case explicit calculation gives
the following answer

COROLLARY 3.8. For k E Z+,

Let us consider the case of dominant À. In this case it is easy to relate the

intertwiners k defined above with the intertwiners between finite-dimensional
representations, considered in Section 2.

Namely, we have the following theorem, which is valid for any Lie

algebra g.

THEOREM 3.9. Let À, J-L E P+, u E L03BC[0], u ~ 0 (note that in this case LA is finite-
dimensional). Assume that A is such that the intertwiner 03A603BC,u03BB: MA - MA 0 Lf-L
defined in Lemma 3.1 is well-defined at this point, i. e. does not have a pole. Let IA
be the maximal submodule in MA: LA = MA/IA. Then 03A603BC,u03BB(I03BB) C IA 0 L03BC, and
thus, 03A603BC,u03BB can be considered as an intertwiner LA ~ LA 0 L03BC. Moreover, this is
the unique intertwiner LA ~ LA 0 Lf-L such that va vA 0 u + ....

REMARK. Note that for À E P+ the intertwiner MA - MÀ 0 L03BC such that
vA - v03BB ~ u + ... is not unique, so 03A603BC,u03BB is a very special intertwiner of this
form.

Proof. Composing 03A603BC,u03BB with the projection M03BB ~ L03BB, we get an intertwiner
M03BB ~ LÀ 0 L03BC. Since the tensor product is finite-dimensional, this intertwiner
must annihilate IA. Uniqueness can be proved in the same way as for MA for
generic À (see the proof of Lemma 3.1 ). ~

Now we are in the position to prove Macdonald’s inner product identities.
Namely, in Section 2 we have proved that

where Àk = À + (k-1)03C1, the intertwiner 03A61: L03BBk ~ LÀk ~ Uk-1 is such that

03A61(v03BBk) = v03BBk ~ uk-10 + ..., 03A62: L03BBk ~ L03BBk ~ Uk-1 1 is such that 03A62(v03BBk) =
v03BBk ~ (uk-10)w + ... , and the Shapovalov form ( , )Uk-1: Uk-1 ~ Uwk-1 ~ C is
normalized so that (uk-10, (uk-10)w) = 1 (there is no contradiction with previous
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conventions, since we have the freedom of fixing the highest weight vector in
Uk-1). Comparing this with the results and notations of this Section, we see that

and Res is the projection U-1 ~ C such that u-10 ~ 1. Using Corollary 3.8, we
immediately obtain

THEOREM 3.10 (Macdonald).

This is precisely the Macdonald’s inner product identity for the root system
An-1.

REMARK. It is easy to generalize the inner product identity to the case when
k is a generic complex number (here we assume that q is specialized to a fixed
real number between 0 and 1). The Macdonald’s polynomials in this situation are
defined in the same way as in Section 2 (Theorem 2.1 ), but in this case

which coincides with (2.1 ) for positive integer values of k. It is easy to show that
(3.12) defines a Laurent series in q whose coefficients are analytic functions of
t = qk for |t|  q. Also, it is easy to see that the coefficients of Macdonald’s

polynomials are rational functions of t = qk which are smooth at t = 0. Therefore,
they are defined for a generic value of t, and hence we have

Indeed, both sides of (3.11) are holomorphic in t = qk for |t|  q, and coincide for
t = qk, k ~ Z+ (since for this case (3.13) reduces to Theorem 3.10). Therefore,
they must coincide identically.

4. Symmetry identity

In this section we only consider the case g = sln.
The main goal of this section is to prove Theorem 4.3, which establishes certain

symmetry between the values P03BB(q2(u+k03C1)) and P03BC(q2(03BB+k03C1)) (notations will be
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explained later). The proof of this theorem is based on the technique of ribbon
graphs.

As in Section 3, let 03A603BB: L03BBk ~ L03BBk 0 Uk-1 be such that 03A6(v03BBk) = v03BBk 0

uk-10 +···, 03BBk=03BB+(k-1)03C1.

LEMMA 4.1.

where XJ1, E C[P] is the weighted trace of 03A603BC (see Section 2), and ~03BC(q03BB) stands
for polynomial in q, q-1 which is obtained by replacing each formal exponent ea
in the expression for ~03BC by q(03B1,03BB).

Proof. Let us consider the operator F: L A k ~ L Ak 0 U k-1 1 corresponding to the
ribbon graph on the left hand side of (4.1). It is some Uqsln-homomorphism. Since
we know that such a homomorphism is unique up to a constant, it follows that
F = a03A603BB for some constant a. To find a, let us find the image of the highest-weight
vector. First, consider the following part of this picture

The corresponding operator is the product R21 R: L03BBk 0 (L03BCk)* ~ L Àk 0
(L J1.k )*. It follows from the explicit form of R-matrix (1.3) that if x E ZB [03B1] then
R21R(v03BBk ~ x) = q-2(03BBk,03B1)v03BBk 0 x + .... Thus, if Xi is basis in LJ1.k, xi - dual
basis in L*03BCk, x2 has weight ai then explicit calculation shows that
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and thus,
proof.

which completes the

COROLLARY 4.2. Let be
as in Theorem 2.4. Then

Proof. This follows from the previous lemma and the arguments used in the
proof of Theorem 2.4. 0

In a similar way, repeating with necessary changes all the steps of Sections 2
and 3 one can prove

COROLLARY 4.2’. Formula (4.2) remains valid if we replace in the graph on the
left-hand side 03A603BC by 03A603BC 03A603BB by 03A603BB and interchange wl and wi.

THEOREM 4.3.

Proof. The proof is based on the following identity of the ribbon graphs
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Due to Corollaries 4.2 and 4.2’, this implies

Substituting in this formula explicit expression for (PA, PA ) k (Theorem 3.10)
and using the expression for dimq La

which can be easily deduced from the Weyl character formula, we get the statement
of the theorem. 0

COROLLARY 4.4 (Macdonald’s special value identity, [M1, M2]).

Proof. Let 03BC = 0. Then PJ1 = 1, and formula (4.3) reduces to (4.6). ~

REMARK. Similarly to the arguments at the end of Section 3, we can show
that for generic k
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Actually, in this case we do not even need an analytic argument: it is enough to
observe that both sides of this equality are rational in qk and coincide for positive
integer values of k.

5. Recursive relations

In this section we explain how recurrence relations for Macdonald’s polynomials
can be deduced from the symmetry identity.

For r ~ {1, .... n - 1}, let Ar denote the set of weights of the representation
039BrCn of 51,,. It can be naturally identified with the set of subsets of size r in
11, ..., nl.

Recall [Ml] that Macdonald’s polynomials satisfy the difference equations

where c§ = 03A3v~039Br q2(03BB+k03C1,v) = Xr(q2(03BB+k03C1)) X being the character of 039BrCn,
and Mr are the operators

where Tve03BB = q2(v,)..) e)... (These operators were introduced independently by
I. Macdonald and S. Ruijsenaars.)

Let us specialize (5.1 ) at q2(/-L+kp), J-L C P+. Notice that under this specialization
in the right-hand side of (5.2) the terms corresponding to such values of v that
p + v ~ P+ drop out. Indeed, if p + v ~ P+ then we are forced to have
(J-L, aj) = 0, (v, aj) = -1 for some simple root 03B1j. The coefficient to Tv in (5.2)
is 03A003B1~R:(03B1,v)=-1 q2k-q2(03BC+k03C1,03B1) 1-q2(03BC+k03C1,03B1). Clearly, it contains the factor q - q in
the numerator. But this factor is zero since (y, 03B1j) = 0. So the whole coefficient is
zero and the term drops out. Thus we get

(here, as before, [n] = qn-q-n q-q-1.
Now, using the symmetry identity (4.3), let us replace P03BB(q2(03BC+k03C1)) with

P03BC(q2(03BB+k03C1))g(03BB) g(03BC), where g(03BB) = I1aER+ 03A0k-1i=0 [(03B1, 03BB + kp) + i]. Then, after a
short computation, we obtain the following recursive relation
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This relation is an equality between trigonometric polynomials in A satisfied for
any dominant integral weight À. Hence, it is satisfied identically, and we have

PROPOSITION 5.1. Macdonald’s polynomials satisfy the recursive relations

For example, if n = 2, r = 1, Ar = C2, relation (5.5) becomes the standard
three-term recursive relation for the q-ultraspherical polynomials (formula (2.15)
in [AI]).

REMARK. Relations (5.5) determine the matrix of the operator of multiplication
by Xr in C[P]W in the basis of Macdonald’s polynomials.

COROLLARY 5.2. The generalized characters XA (see Section 2) satisfy

Now let us assume that A is generic and consider the intertwining operator
03A6k03BB: MA - M03BB ~ Uk-1 defined in Section 3. Let us introduce the 1b-functions

We would like to deduce recursive relations for the 03C8-functions.
Looking at the expansions

we see that for each fixed f3 the coefficients e6 ’e coincide for sufficiently
large (03BB, 03C1), and that 03C803B203BB+(k-1)03C1 is a trigonometric rational function of À. Therefore,
Corollary 5.2 implies
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PROPOSITION 5.3. The function 03C803BB(x) satisfies the recurrence relations

This identity remains valid when the parameter k is generic.

6. Appendix: ribbon graphs

For the sake of completeness we recall here the basic facts about the correspondence
between ribbon graphs and representations of quantum groups, following as closely
as possible [RT1, RT2].
A ribbon graph is an object in space formed by ribbons, which can be thought

of as narrow strips of paper, and coupons, which are solid rectangles. Each ribbon
and each coupon have a preferred direction. We require that each ribbon graph be
located in between the horizontal planes z = 0 and z = 1, and the ’free ends’
of ribbons can be located either on the interval [0, 1] ] x 0 x 0 (’bottom’) or on
the interval [0, 1] x 0 x 1 (’top’). Some examples of ribbon graphs are shown on
Figures 1 and 2. We always consider the ribbon graphs up to isotopy.
We consider ’coloring’ of ribbon graphs. That is, to each ribbon we assign a

’color’, i.e. an integral dominant weight A e P+, and to each coupon we assign a
homomorphism of Uq g-modules of the following type. Let us define the ’bottom’
and ’top’ sides of the coupon in such a way that the direction of the coupon is from
top to bottom. If the colors of the ribbons with the ends on the ’bottom’ (’top’)
are A i , A k (03BC1, ... , J-Lm, resp.), then coloring of the coupon is assigning to it a

Uqg-intertwiner:L03B5103BB1 ~··· 0 L1: --+ L03B5103BC1 ~··· 0 L:-, where Le is either L - if
the directions agree - or L* - if they do not. For example, to the coupon shown on
Figure 1(b) we must assign an intertwiner L A - LJ-t 0 Lv.

Figure 1.
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Such colored ribbon graphs can be multiplied in an obvious way if the directions
and colors of the ’bottom’ of the first graph coincide with those of the ’top’ of the
second one. We also have a notion of ’tensor product’ of ribbon graphs: if 03931, r2
are ribbon graphs then 03931 ~ F2 is the ribbon graph which is obtained by placing
f2 to the right of fi.

Then the main theorem, proved in [RT1] says that there is a unique way to assign
to each colored ribbon graph f a Uq g-homomorphism F(0393) so that the following
conditions are satisfied

(a) if the colors of the ribbons with the ends on the ’bottom’ (’top’) are
03BB1,...,03BBk (03BC1,..., J-Lm, resp.), then F(0393) is an Uq g-intertwiner

where Lê is either L or L* depending on the direction of the corresponding ribbon.
For example, for the ribbon graph 0393 from the Figure 1, F( r ) is an intertwiner

L03BB1 ~ L*03BB2 ~ L03BB3 ~ L*03BB3 ~ L*03BB2 ~ L03BB1.
(b) F respects composition and tensor product.
(c) the values of F for the ’elementary’ graphs are shown below.
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(all unrnarked arrows are canonical morphisms from (1.1))

We will only need F(r) for the graphs r which have no twists. In this case, one
can draw just the lines instead of the ribbons.

Examples.
1. If f: L03BB1 ~···~ L03BBk ~ L03BB1 ~···~ LÀk is an intertwiner, then

is an intertwiner, then

where f * is just the usual adjoint operator to f.
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