@article{CM_1993__89_2_217_0, author = {Demailly, Jean-Pierre and Peternell, Thomas and Schneider, Michael}, title = {K\"ahler manifolds with numerically effective {Ricci} class}, journal = {Compositio Mathematica}, pages = {217--240}, publisher = {Kluwer Academic Publishers}, volume = {89}, number = {2}, year = {1993}, mrnumber = {1255695}, zbl = {0884.32023}, language = {en}, url = {http://www.numdam.org/item/CM_1993__89_2_217_0/} }
TY - JOUR AU - Demailly, Jean-Pierre AU - Peternell, Thomas AU - Schneider, Michael TI - Kähler manifolds with numerically effective Ricci class JO - Compositio Mathematica PY - 1993 SP - 217 EP - 240 VL - 89 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1993__89_2_217_0/ LA - en ID - CM_1993__89_2_217_0 ER -
%0 Journal Article %A Demailly, Jean-Pierre %A Peternell, Thomas %A Schneider, Michael %T Kähler manifolds with numerically effective Ricci class %J Compositio Mathematica %D 1993 %P 217-240 %V 89 %N 2 %I Kluwer Academic Publishers %U http://www.numdam.org/item/CM_1993__89_2_217_0/ %G en %F CM_1993__89_2_217_0
Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael. Kähler manifolds with numerically effective Ricci class. Compositio Mathematica, Tome 89 (1993) no. 2, pp. 217-240. http://www.numdam.org/item/CM_1993__89_2_217_0/
[Au76] Equations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci Paris Ser. A 283 (1976) 119-121; Bull. Sci. Math. 102 (1978) 63-95. | MR | Zbl
:[Be83] Variétés Kählériennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983) 755-782. | MR | Zbl
:[Bi63] A relation between volume, mean curvature and diameter, Amer. Math. Soc. Not. 10 (1963) 364.
:[Bo74a] On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR Sbornik 22 (1974) 580-583. | MR | Zbl
:[Bo74b] Kähler manifolds with trivial canonical class, Izvestija Akad. Nauk 38 (1974) 11-21 and Math. USSR Izvestija 8 (1974) 9-20. | MR | Zbl
:[Ca57] On Kähler manifolds with vanishing canonical class, Alg. geometry and topology, Symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton (1957) 78-89. | MR | Zbl
:[CP91] On the second exterior power of tangent bundles of 3-folds, Comp. Math 83 (1992), 329-346. | Numdam | MR | Zbl
, :[DPS91] Compact complex manifolds with numerically effective tangent bundles, Preprint 1991. To appear in J. Alg. Geom. | Zbl
, , :[Ga80] Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. J. 29 (1980) 897-912. | MR | Zbl
:[Gr81] Groups of polynomial growth and expanding maps, Appendix by J. Tits, Publ. I.H.E.S. 53 (1981) 53-78. | Numdam | MR | Zbl
:[Ha77] Algebraic Geometry, Graduate Texts in Math., Springer, Berlin, 1977. | MR | Zbl
:[HK78] A general comparison theorem with applications to volume estimates for submanifolds, Ann. Scient. Ec. Norm. Sup. 4e Série, 11 (1978) 451-470. | Numdam | MR | Zbl
, :[Ka82] A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982) 43-46. | MR | Zbl
:[KMM87] Introduction to the minimal model pro-gram, Adv. Studies Pure Math. 10 (1987) 283-360. | Zbl
, , :[Ko61] On compact Kähler manifolds with positive definite Ricci tensor, Ann. Math 74 (1961) 570-574. | MR | Zbl
:[Kr86] Higher direct images of dualizing sheaves, Ann. Math. 123 (1986) 11-42. | MR | Zbl
:[Li67] Variétés Kählériennes et première classe de Chern, J. Diff. Geom. 1 (1967) 195-224. | MR | Zbl
:[Li71] Variétés Kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. Diff. Geom. 6 (1971) 47-94. | MR | Zbl
:[Li72] Variétés Kählériennes à première classe de Chern non négative et situation analogue dans le cas riemannien, Ist. Naz. Alta Mat., Rome, Symposia Math., vol. 10, Academic Press, New-York (1972) 3-18. | MR | Zbl
:[Ma69] Recent results on holomorphic vector fields, J. Diff. Geom. 3 (1969) 477-480. | Zbl
:[Mi81] Algebraic methods in the theory of algebraic threefolds, Adv. Studies in Pure Math. 1 (1983) 69-99. | MR | Zbl
:[Mo82] Threefolds whose canonical bundles are not numerically effective, Ann. Math. 116 (1982) 133-176. | MR | Zbl
:[My41] Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941) 401-404. | JFM | MR | Zbl
:[Vi82] Vanishing theorems, J. Reine Angew. Math. 335 (1982) 1-8. | MR | Zbl
:[Y77] Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 (1977) 1789-1790. | MR | Zbl
:[Y78] On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure and Appl. Math. 31 (1978) 339-411. | MR | Zbl
: