@article{ASENS_1978_4_11_4_451_0, author = {Heintze, Ernst and Karcher, Hermann}, title = {A general comparison theorem with applications to volume estimates for submanifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {451--470}, publisher = {Elsevier}, volume = {Ser. 4, 11}, number = {4}, year = {1978}, doi = {10.24033/asens.1354}, mrnumber = {80i:53026}, zbl = {0416.53027}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1354/} }
TY - JOUR AU - Heintze, Ernst AU - Karcher, Hermann TI - A general comparison theorem with applications to volume estimates for submanifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 1978 SP - 451 EP - 470 VL - 11 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1354/ DO - 10.24033/asens.1354 LA - en ID - ASENS_1978_4_11_4_451_0 ER -
%0 Journal Article %A Heintze, Ernst %A Karcher, Hermann %T A general comparison theorem with applications to volume estimates for submanifolds %J Annales scientifiques de l'École Normale Supérieure %D 1978 %P 451-470 %V 11 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1354/ %R 10.24033/asens.1354 %G en %F ASENS_1978_4_11_4_451_0
Heintze, Ernst; Karcher, Hermann. A general comparison theorem with applications to volume estimates for submanifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 11 (1978) no. 4, pp. 451-470. doi : 10.24033/asens.1354. http://www.numdam.org/articles/10.24033/asens.1354/
[1] An Extension of Rauch's Metric Comparison Theorem and some Applications (Illinois J. Math., vol. 6, 1962, pp. 700-712). | MR | Zbl
,[2] A Relation Between Volume, Mean Curvature and Diameter (Amer. Math. Soc. Not., vol. 10, 1963, pp. 364).
,[3] Sur la courbure totale des courbes fermées (Ann. Soc. Polon. Math., vol. 20, 1947, pp. 251-265). | MR | Zbl
,[4] Finiteness theorems for Riemannian manifolds (Amer. J. Math., vol. 92, 1970, pp. 61-74). | MR | Zbl
,[5] On the Total Curvature of Immersed Manifolds, I : An Inequality of Fenchel-Borsuk-Willmore (Amer. J. Math., vol. 93, 1971, pp. 148-162). | MR | Zbl
,[6] Über die Krümmung und Windung geschlossener Raumkurven (Math. Ann., vol. 101, 1929, pp. 238-252). | JFM
,[7] A Generalized Sphere Theorem (Ann. of Math., vol. 106, 1977, pp. 201-211). | MR | Zbl
and ,[8] Une borne pour la longueur des géodésiques périodiques d'une variété riemannienne compacte (Thèse, Paris, 1971).
,[9] Contribution to Riemannian Geometry in the Large (Ann. of Math., vol. 69, 1959, pp. 654-666). | MR | Zbl
,[10] On Positively Curved Riemannian Manifolds with Bounded Volume (Tôhoku Math. J., 2nd series, vol. 25, 1973, pp. 213-218). | MR | Zbl
and ,[11] A Contribution to Differential Geometry in the Large (Ann. of Math., vol. 54, 1951, pp. 38-55). | MR | Zbl
,[12] The Conjugate Locus of a Riemannian Manifold (Amer. J. Math., vol. 87, 1965, pp. 575-604). | MR | Zbl
,[13] Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., vol. 122, 1966, pp. 341-356). | MR | Zbl
,[14] On the Covering of a Complete Space by the Geodesics through a Point (Ann. of Math., vol. 36, 1935, pp. 679-704). | Zbl
,[15] Note on Embedded Surfaces (An. Sti. Univ. “Al. I. Cuza”, Iasi, Sect. Ia Mat., 11B, 1965, pp. 493-496). | MR | Zbl
,[16] Closed Geodesics on Homogeneous Spaces [Math. Z. (to appear)].
,Cité par Sources :