@article{CM_1993__89_2_163_0, author = {Call, Gregory S. and Silverman, Joseph H.}, title = {Canonical heights on varieties with morphisms}, journal = {Compositio Mathematica}, pages = {163--205}, publisher = {Kluwer Academic Publishers}, volume = {89}, number = {2}, year = {1993}, mrnumber = {1255693}, zbl = {0826.14015}, language = {en}, url = {http://www.numdam.org/item/CM_1993__89_2_163_0/} }
TY - JOUR AU - Call, Gregory S. AU - Silverman, Joseph H. TI - Canonical heights on varieties with morphisms JO - Compositio Mathematica PY - 1993 SP - 163 EP - 205 VL - 89 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1993__89_2_163_0/ LA - en ID - CM_1993__89_2_163_0 ER -
Call, Gregory S.; Silverman, Joseph H. Canonical heights on varieties with morphisms. Compositio Mathematica, Tome 89 (1993) no. 2, pp. 163-205. http://www.numdam.org/item/CM_1993__89_2_163_0/
1. Néron Models. Springer-Verlag, Berlin, (1990). | MR | Zbl
, , and :2. Variation of local heights on an algebraic family of abelian varieties. Théorie des Nombres, Berlin, (1989). | MR | Zbl
:3. Computing canonical heights on K3 surfaces, in preparation.
and :4. An estimate of the remainder term in Tate's formula (Russian), Mat. Zametki 3 (1968) 271-278. | MR | Zbl
:5. Rational points of a class of algebraic curves, AMS Translations (2) 66 (1968) 246-272. | Zbl
:6. Heights in families of abelian varieties, Duke Math. J. 58 (1989) 617-632. | MR | Zbl
:7. Algebraic Geometry, Springer-Verlag, New York, (1977). | MR | Zbl
:8. Fundamentals of Diophantine Geometry, New York, (1983). | MR | Zbl
:9. Number Theory III: Diophantine Geometry. Encycl. Math. Sci. v. 60, Springer-Verlag, Berlin, (1991). | MR | Zbl
:10. Invariant sets of morphisms on projective and affine number spaces, J. Algebra 20 (1972) 419-434. | MR | Zbl
:11. The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk. SSSR 33 (1969) 433-438. | MR | Zbl
:12. Height on families of abelian varieties, Math. USSR Sbor. 18 (1972) 169-179. | Zbl
and :13. On polynomial transformations in several variables, Acta Arith. 11 (1965) 163-168. | MR | Zbl
:14. Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math. 82 (1965) 249-331. | MR | Zbl
:15. Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983) 197-211. | MR | Zbl
:16. The Arithmetic of Elliptic Curves, Springer, New York, (1986). | MR | Zbl
:17. Arithmetic distance functions and height functions in Diophantine geometry, Math. Ann. 279 (1987) 193-216. | MR | Zbl
:18. Computing heights on elliptic curves, Math. Comp. 51 (1988) 339-358. | MR | Zbl
:19. Rational points on K3 surfaces: A new canonical height, Invent. Math. 105 (1991) 347-373. | MR | Zbl
:20. Variation of the canonical height on elliptic surfaces I: Three examples, J. Reine Angew. Math. 426 (1992) 151-178. | MR | Zbl
:21. Letter to J.-P. Serre, Oct. 1, (1979).
:22. Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983) 287-294. | MR | Zbl
:23. K3-surfaces with Picard number 2, Arch. Math. 50 (1988) 73-82. | MR | Zbl
:24. Hypersurfaces of the Flag Variety, Math. Zeit. 198 (1988) 21-38. | MR | Zbl
:25. On the difference of the Weil height and the Néron-Tate height, Math. Z. 174 (1976) 35-51. | MR | Zbl
: