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Let A be an abelian variety defined over a number field K and let D be a
symmetric divisor on A. Néron and Tate have proven the existence of a
canonical height hA,D on A(k) characterized by the properties that hA,D is a
Weil height for the divisor D and satisfies A,D([m]P) = m2hA,D(P) for all
P ~ A(K). Similarly, Silverman [19] proved that on certain K3 surfaces S
with a non-trivial automorphism ~: S ~ S there are two canonical height
functions hs characterized by the properties that they are Weil heights for
certain divisors E ± and satisfy ±S(~P) = (7 + 43)±1±S(P) for all P E S(K) .
In this paper we will generalize these examples to construct a canonical
height on an arbitrary variety V possessing a morphism ~: V - V and a
divisor class q which is an eigenclass for 0 with eigenvalue strictly greater
than 1. We will also prove a number of results about these canonical heights
which should be useful for arithmetic applications and numerical compu-
tations. We now describe the contents of this paper in more detail.

Let V be a variety defined over a number field K, let ~: V ~ V be a
morphism, and suppose that there is a divisor class q E Div(V) ~ R such
that 0*,q = aq for some 03B1 &#x3E; 1. Our first main result (Theorem 1.1) says that
there is a canonical height function

characterized by the two properties that V,~,~ is a Weil height function for
the divisor class ~ and
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** Research supported by NSF DMS-8913113 and a Sloan Foundation Fellowship.
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As an application of the canonical height, we show that if 17 is ample, then
V(K) contains only finitely many points which are 0-periodic, generalizing
results of Narkiewicz [13] and Lewis [10].
Néron (see [8]) has shown how to decompose the canonical height hl,D on

an abelian variety into a sum of local heights, A,D(P) = 03A3 nVÂA,D(P, v), where
the sum is over the distinct places v of K(P). We likewise show that the
canonical height V,~,~ constructed in Theorem 1.1 can be decomposed as a
sum

Here E is any divisor in the divisor class q, and

is a Weil local height function for the divisor E with the additional property
that if f is any function satisfying ~*E = aE + div( f ), then there is a constant
a so that

The existence of the canonical local height V,~,~ is proven in Theorem 2.1,
and the fact that the canonical height V,~,~ is the sum of the local heights is
given in Theorem 2.3.
Any two Weil heights for a given divisor differ by a bounded amount, so

in particular the difference of the canonical height V,~,~ and any given Weil
height hV,~ is bounded by a constant depending on V, q, 0 and hV,~. For
many applications it is important to have an explicit bound for this constant.
Such a bound was given by Dem’janenko [4] and Zimmer [25] for Weierstrass
families of elliptic curves, by Manin and Zarhin [12] for Mumford families
of abelian varieties, and by Silverman and Tate [15] for arbitrary families of
abelian varieties. We follow the approach in [15] and consider a family V - T
of varieties with a map 0: V ~ V over T and a divisor class 7y satisfying
~*~ = 03B1~. Then on almost all fibers ’V, there is a canonical height Vt,~t~t,
and we can ask to bound the difference between this height and a given Weil
height hV,~ in terms of the parameter t. In Theorem 3.1 we show that there
are constants ci, C2 so that
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We also give (Theorem 3.2) a similar estimate for the difference between
the canonical local height Vt,Et,~t and a given Weil local height AV,E . This
generalizes Lang’s result [8] for abelian varieties.

Suppose now that the base T of the family V- T is a curve, let hT be a
Weil height on T corresponding to a divisor of degree 1, and let P: T ~ V
be a section. The generic fiber V of Y is a variety over the global function
field K(T), the section P corresponds to a rational point Pv e V(K(T)), and
Theorem 1.1 gives a canonical height Vt,~V,~V which can be evaluated at
the point Pv. There are then three heights V,~V,~V, Vt,~t,~V, and hT which
may be compared. Generalizing a result of Silverman [15], we show in
Theorem 4.1 that

Silverman’s original result has been generalized and strengthened in various
ways by Call [2], Green [6], Lang [8, 9], Silverman [20] and Tate [22]. We
have not yet been able to prove any of these stronger results in our general
situation.

In the fifth section we take up the question of how one might efficiently
compute the canonical local heights V,E,~, and thereby eventually the canoni-
cal global height hV,E,CP’ In the case that V is an elliptic curve, Tate (unpub-
lished) gave a rapidly convergent series for V,(O),[2](P, v) provided that the
completion Kv of K at v is not algebraically closed, and Silverman [18]
described a modification of Tate’s series which works for all v. We give
series for our canonical local heights Â V,E,cp generalizing the series of Tate
(Proposition 5.1) and Silverman (Theorem 5.3) and briefly discuss how such
series could be implemented in practice.
The final section is devoted to a description of canonical local heights for

non-archimedean places in terms of intersection theory. In the case of abelian
varieties it is known that the local heights can be computed using intersection
theory on the Néron model. We show in general that if V has a model V
over a complete local ring Ov such that every rational point extends to a
section and such that the morphism 0: V ~ V extends to a finite morphism
(D: V ~ V, then the canonical local height is given by a certain intersection
index on V. We leave for future study the question of whether such models
exist.

To summarize, in this paper we develop a theory of global and local
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canonical heights on varieties possessing morphisms with non-unit divisorial
eigenclasses. We describe how these heights vary in algebraic families and
give algorithms which may be used for computational purposes.
The theory of canonical heights on abelian varieties has had profound

applications throughout the field of arithmetic geometry. Likewise, several
arithmetic applications and many open questions for K3 canonical heights
are described in [19]. It is our hope that the general theory of canonical
heights described in this paper will likewise prove useful in studying the
arithmetic properties of varieties.

1. Global canonical heights

In this section we fix the following data:
K a global field with a complete set of proper absolute values satisfying

a product formula. We will call such a field a global height field, since
it is for such fields that one can define a height function on pn( K).
(For example, K could be a number field or a one variable function
field. )

V/K a smooth, projective variety.
0 a morphism ~: V ~ V defined over K.
~ a divisor class q E Pic(V) 0 R.

hV,~ a Weil height function hV,~: V(K) ~ R corresponding to ~.
(See [8], Chapters 2, 3, 4, for details about global height fields and height
functions on varieties.) We further assume that q is an eigenclass for 0 with
eigenvalue greater than 1. In other words, we assume that

It follows from functoriality of height functions [8] that

The Ov(1) depends on the variety V, the map 0, and the choice of Weil
height function hV,~, but it is bounded independently of P E V (K). Our first
result says that there exists a Weil function associated to ~ for which the

Ov(1) entirely disappears.

THEOREM 1.1. With notation as above, there exists a unique function
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satisfying the following two conditions :

We call the function V,~,~ described in Theorem 1.1 the canonical height
on V associated to the divisor class ~ and the morphism 0. If one or more
of the elements of the triple (V, q, 0) is clear, we will sometimes omit it
from the notation.

Example 1. Let A be an abelian variety, let [n] : A - A be the multiplica-
tion-by-n map for some n  2, and let q E Pic(A) be a symmetric divisor.
(That is, [-1]*~ = q.) As is well-known, one then has the relation [n]*=
n2TJ, so one obtains a canonical height h~ = hA,~,[n] satisfying ~(nP) =
n2~(P). This is the classical canonical height constructed by Néron and Tate.
(See, for example, [8, Chapter 5].) Our proof of Theorem 1.1 is an easy
extension of Tate’s argument to a slightly more general setting.

Example 2. Let S C P2 X P2 be a smooth K3 surface given by the intersec-
tion of a (2, 2)-form and a (1, 1)-form. The two projections S~P2 are
double covers, so each gives an involution on S, say o-1, 0-2: S~ S. Let

Ç1, e2 F- Pic(S) be hyperplane sections of type (1, 0) and (0, 1) respectively,
let 0 = 2 + B13, and define divisor classes on S by the formulas

Further let 0 = 0’2 0 03C31. Then one can check that

so we obtain two canonical heights hS,~,~+ and hS,~-1,~-. It is worth noting
that ~+ and ~- each lie on the boundary of the effective cone in Pic(S) ~ R,
but that their sum ~+ + ~- is ample. This observation is useful for studying
the arithmetic of S. For more details concerning this example, including a
proof of the facts we have stated and explicit formulas that can be used to
compute the canonical height, see [19] and [3].

Example 3. Let 0: IPn ~ Pn be a morphism of degree d : 2. Then any
divisor class q E Pic(Pn) ~ 7L satisfies ~*~ = d~, so we can apply Theorem
1.1. (This had earlier been observed by Tate, but never published.) Notice
that just as in the case of abelian varieties, one can take q to be ample,
which means that Corollary 1.1.1 below is applicable.

Using the canonical height, we can easily prove a strong rationality result
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for pre-periodic points. We recall that a point P is called pre-periodic for ~
if its orbit

is finite. (Equivalently, P is pre-periodic if some iterate ~i(P) is periodic.)
The following corollary gives a strong rationality bound for pre-periodic
points. It generalizes results of Narkiewicz [13] and Lewis [10], who prove
that there are only finitely many K-rational pre-periodic points in the cases
V = An and V = Pn respectively. Lewis’ proof, in particular, uses basic pro-
perties of Weil height functions, but our use of the canonical height reduces
the proof to just a few lines.

COROLLARY 1.1.1. Let 0: V/K ~ VIK be a morphism defined over a
number field K, and suppose that there is an ample divisor class q satisfying
(1). Let P E V (K).
(a) P is pre-periodic for 4J if and only if hV,7J,f/J(P) = 0.
(b) V (K) contains only finitely many pre-periodic points for 0. More gen-

erally,

is a set of bounded height, so in particular it contains only finitely many
points defined over all extensions of K of a bounded degree.

Proof. (a) If P is pre-periodic for 0, then hV,~(~n(P)) takes on only finitely
many distinct values, and so

Conversely, if hV,~,~(P) = 0, then

Hence the set {P, O(P), ~2(P), ...} is a set of bounded height, so it is finite.
(Note this is where we use the fact that ~ is ample.) Therefore P is pre-
periodic.

(b) If P is pre-periodic for ~, then V,~,~(P) = 0 from (a), so hV,~(P) =
V,~,~(P) + 0(l) is bounded. This shows that the pre-periodic points form a
set of bounded height. The rest of (b) is then immediate, since a set of
bounded height contains only finitely many points defined over fields of
bounded degree. D
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The proof of Theorem 1.1 uses the following result, whose clever telescoping-
sum argument is due to Tate.

PROPOSITION 1.2. With notation as above, let c(V) = c(V, 0, hV,~) be a
bound for the OV(1) in (2). In other words,

Then for any point P E V (K) the limit

exists and satisfies

Proof. Let P E V(K), and let n  m . 0 be integers. Then

This inequality shows that the sequence 03B1-nh~(~nP) is Cauchy, so the limit
(4) defining hV,7J,cp(P) exists. Now put m = 0 in (6) and let n ~ ~ to obtain
the estimate

which completes the proof of Proposition 1.2. D

Proof. (of Theorem 1.1). We define hV,7J,cp by the formula (4) in Proposition
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1.2. Then (5) tells us that V,~,~ satisfies property (i) of Theorem 1.1, while
property (ii) is immediate from the definition (4):

It remains to check that V,~,~ is unique. Suppose that ’V,~,~ is another
function satisfying (i) and (ii), and let g = V,~,~ - ’V,~,~. Then (i) implies
that g is bounded, while (ii) says that g(~P) = ag(P). Hence

Since a &#x3E; 1 by assumption, it follows that g(P) = 0, and since P E V (K) was
arbitrary, there is only one function satisfying (i) and (ii). This completes
the proof of Theorem 1.1. D

2. Canonical local heights

In this section we are going to develop a theory of canonical local heights,
analogous to the theory of Néron local heights on abelian varieties. Summing
the results of this section over all absolute values, we then recover Theorem
1.1, albeit with a far more complicated proof. We will use the following
notation, much of it carried over from Section 1:

K a global height field with set of absolute values MK. (See Section
1.)

M = MK the set of absolute values on K extending those on K.
VlK a smooth projective variety.
0 a morphism 0: V ~ V defined over K.
E a divisor E E Div(V) 0 R.

.tv,E a (Weil) local height function 03BBV,E: (V B JE 1) x M - R associated
to the divisor E. (Here to ease notation we write V in place of
V(K).)

For basic facts about local height functions, MK-bounded functions and
MK-constants, see [8], Chapter 10. We will freely use terminology from [8]
without further reference.
We further assume that the divisor class of E is an eigenclass for 0:
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Here - denotes linear equivalence of divisors. Thus the divisor class [E] E
Pic(V) ~ R of E satisfies the condition (1) imposed on q in Section l.

THEOREM 2.1. (a) With notation as above, there exists a function

with the following properties:
(i) V,E,~ is a Weil local height function corresponding to the divisor E.

(ii) Let f E K(V)* ~ R be a function such that

Then there is a constant a E K * 0 R, depending on f and V,E,~, such that

as functions on (V B (JE U 1 O*E 1» x M.
If ’V,E,~ is another function satisfying (i) and (ii), then there is a constant

b E K* 0 R such that

(b) Equivalently, given any function f E K(V)* ~ R satisfying (8) there

exists a unique function

which is a Weil local height for the divisor E and which satisfies

Remark. A "function" f~K(V)*~R is really a formal product
f = 03A0 f~ii with each fi e K(V) a rational function on V and each Ei E R. The
"value" of f at a point P E V(K) is the formal product 03A0f~ii(P). (Note for
example that the field K may have positive characteristic, so raising to a real
power may not make sense.) However, it makes sense to define the divisor
of f to be
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and similarly if v E M is an absolute value on K, then we can define v( f(P))
to be the real number

This explains the symbols used in part (ii) of Theorem 2.1.
We begin by proving a variant of a lemma of Tate described in [8], Chapter

11, Lemma 1.2.

LEMMA 2.2. Let  be a topological space, let 0:.!E  be a côntinuous

function, let a E R be a real number satisfying 03B1 &#x3E; 1, and let

be a bounded continuous function. Then there exists a unique bounded con-
tinuous function y:  ~ R satisfying

Further,  satisfies

Proof. Let BC(!, R) be the Banach space of bounded continuous func-
tions on X, and let Il.11 be the sup norm on BC(£, R). Consider the operator

Then for any 51, 03B42 E BC(, R) and any x ~  we have

Since a &#x3E; 1, we see that S is a shrinking map, so by standard fixed point
theorems on Banach spaces we know that S has a unique fixed point
 E BC(, R). Now the definition of S and the fact that Si = y gives the
desired relationship
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To get a precise estimate, we first note that for any x ~ ,

so taking the supremum over x gives

Now we compute

This shows that the sequence (S"y)(x) is Cauchy for any x E ae, so we can
define a function

Clearly the function à satisfies Sâ = à, and it is not hard to verify that à is
continuous, so à is just the function y from above. Then putting m = 0 in
(14) and letting n go to infinity gives
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which is clearly stronger than (11). D

Proof. (of Theorem 2.1). Let AV,E be a fixed local height function associ-
ated to the divisor E. The divisor relation (8) and standard properties of
local height functions ([8], Chapter 10) imply that there is an MK-bounded
and MK-continuous function y : V x M ~ R such that

for all v E M and all P E V outside of some Zariski closed subset. Note that

y itself actually extends to all of V by [8], Chapter 10, Proposition 2.3 and
Corollary 2.4.
To ease notation, we will write yv(P) instead of y(P, v). For each v e MK

we know that l’v: V(K) ~ R is v-continuous (since y is MK-continuous) and
bounded (since y is MK-bounded). Applying Lemma 2.2 to the function yv,
the morphism ~: V ~ V, and the real number a &#x3E; 1 appearing in (8), we
produce a new v-continuous and bounded function

The function v satisfies

Now we observe that since y is MK-bounded, the functions ~v are identically
0 for all but finitely many v E MK. It follows from (18) that the same is true
for the "’s. In other words, the map

is MK-continuous and MK-bounded.
We now define V,E,~,f by the formula

The fact that ÿ is MK-continuous and MK-bounded means that it is a local
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height function associated to the zero divisor, so V,E,~,f is a local height
function associated to E. Further, combining the relations (16) and (17) with
the definition (19) gives

This proves the existence half of (b).
To show that V,E,~,f is unique, we suppose that Â’v,E,CP,t is another such

function, and let A = ÀV,E,CP,f - V,E,~,f be the difference. Then A is a local
height corresponding to the divisor E - E = 0, so it extends to an

MK-bounded and MK-continuous function on all of V x M. Next from (10)
we see that A satisfies

But (·, v) is bounded on V (K), we can let m ~ ~ to obtain A(P, v) = 0.
This gives the uniqueness half of (b).
Next we claim that any such V,E,~,f from (b) will have the properties (i)

and (ii) in (a). It is clear that V,E,~,f has property (i), since it is a Weil local
height for E. Similarly, if f’ E K(V)*~R is another function satisfying (8),
then div( f l f ’) = 0, so f = a f ’ for some constant a E K*~R. Hence (20)
becomes the desired result

This proves the existence part of (a).
The uniqueness part of (a) can then be proven exactly as we proved (b).

Or, alternatively, we can observe that if V,E,~ satisfies (i) and (ii) and if we
pick a function f satisfying (8) and the corresponding a in (9), then the
function

satisfies (9), so is uniquely determined from (b). Hence V,E,~ is uniquely



176

determined up to addition of a function of the form (P, v) H v(b) for a
constant b. 

We conclude this section by showing that the global height from Section 1
is the sum of the local heights constructed in this section.

THEOREM 2.3. Fix notation as in Theorem 1.1 and 2.1, and let ÂV,E,4, be a
canonical local height associated to E and 0. Then for all finite extensions
LIK and all points P E V (L) B lEI,

(The absolute values in ML are to be normalized as described in [8].)
Proof. The canonical local height V,E,~ is in particular a Weil local height

associated to the divisor E, so [8], Chapter 10, Section 4, tells us that the
function

extends to a global Weil height

which is well-defined on all of V and depends only on the linear equivalence
class q of E. In particular, F7J differs from any given hV,~ by a bounded
function.

Next let f E K(V)* 0 R be a function satisfying

Then Theorem 2.1. tells us that there is a constant a E K * 0 R such that

for all (P, v) E V x M with P, ~P ~ |E|. Taking a finite extension L/K with
P E V(L) and a E L, we multiply (21) by [Lv: Kv], sum over v E ML, and
divide by [L : K]. Note that the product formula gives
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so we obtain F~(~P) = 03B1F~(P). In other words, we have shown that F~
satisfies

for all points P with P, ~P ~ |E|. But F~ depends only on the lineat equival-
ence dass q of E, so by varying E in this class we find that (22) is valid on
all of V. It follows from (22) and the uniqueness assertion in Theorem 1.1
that F7J = V,~,~, which completes the proof of Theorem 2.3. D

3. Variation of the canonical height in families of varieties

Theorem 1.1(i) says that the canonical height and the Weil height on a
variety differ by a bounded amount, where the bound depends (among other
things) on the variety. In this section we will consider an algebraic family of
varieties and will show how the bound varies as one moves along the family.
The following notation will be used for this section and the next section.
K a global height field (cf. section 1).

TlK a smooth projective variety.
hT a fixed Weil height function on T associated to an ample divisor,

chosen to satisfy hT  0.
V/K a smooth projective variety.

7T a morphism ir: V ~ T defined over K whose generic fiber is smooth
and irreducible.

~ a rational map 0: V/T ~ V/T, defined over K, such that 0 is a morph-
ism on the generic fiber of V/T. Note our assumption that 0 is defined
on VI T means that 03C0° 0 = 7T.

~ a divisor class q E Pic(V) Q9 R.
T0 the subset of T having "good" fibers,

T0 = tt E T: Vt is smooth and Ot: Vt ~ Vt is a morphism}.

[Here and in what follows we use a subscript t to denote restriction
def

to the fiber Vt = 7T-1(t).]
We further make the assumption that there is a real number 03B1 &#x3E; 1 such

that
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the divisor class ~*~ - aq is fibral. (23)

By this we mean that the divisor class ~*~ - aq is represented by a divisor
à with the property that 03C0(|0394|) ~ T. Equivalently, there exists a divisor
DE Div(T) such that 7r-D &#x3E; à &#x3E; -7T*D. (Note we write A &#x3E; B to mean

that the divisor A - B is positive, while we will say that a divisor is effective
if its divisor class contains a positive divisor.)
By definition, the fiber E is irreducible for each t E T0. If the support of

a fibral divisor includes an irreducible fiber, we can always find a linearly
equivalent divisor which does not include that fiber. This shows that

It follows from Theorem 1.1 and (24) that for each t E To there is a canonical
height

Next we fix a Weil height

associated to q. For any t E T° we let i t : E a_ V be the natural inclusion,
and then by definition ii17 = TJt. It follows from Theorem 1.1(i) and functor-
iality of heights that

where the 0(l) depends (at least) on t. Our main result in this section makes
explicit this dependence on t.

THEOREM 3.1. With notation as above, there exist constants cl, e2 de-

pending on the family V ~ T, the map ~, the divisor class q, and the choice
of Weil height functions hCY,7J and hT, so that

Remark. The first results of this sort were proven by Dem’janenko [4] and
Zimmer [25] for the canonical height on the family of elliptic curves E: y2 =
x3 + ax + b. In the notation of Theorem 3.1 we would set V = E, T =
P1, t = [a, b, 1], and T0 = 1[a, b, 1] : 4a3 + 27b2 =1= 01. This was generalized to
families of abelian varieties by Manin and Zarhin [12] for a certain universal
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family and by Silverman and Tate [15] in general. Our proof of Theorem
3.1 uses the methods of Silverman-Tate.

Lang [8] reworked the proof in [15] to estimate the variation of canonical
local heights in families of abelian varieties. At the end of this section we
will likewise prove a local version of Theorem 3.1. We could, of course,
then deduce Theorem 3.1 by simply adding up the local contributions. How-
ever, the proof of the local version requires considerably more machinery
than the global case, so we felt it was worthwhile to prove Theorem 3.1.

directly.
Proof. (of Theorem 3.1). During the proof of Theorem 3.1 we will encoun-

ter one technical problem for which we know the following three solutions:
(1) We can apply Hironaka’s resolution of singularities to our varieties, as

was done in the original Silverman-Tate proof. The advantage of this
approach is that it is quick and easy, the disadvantage is that it requires
using a very deep result and that it is not currently applicable in positive
characteristic.

(2) We can apply normalization to our varieties. This is a comparatively
elementary procedure and works in any characteristics ([7], II Exercise
3.8). Further, the theory of Weil divisors and Weil heights carries over
to normal varieties, but unfortunately the height theory is not well docu-
mented in the literature.

(3) We can replace T by T°, replace V by 03C0-1(T0), and use the theory
of heights on quasi-projective families developed in [17]. This has the
advantage of working in complete generality, but the disadvantage of
requiring the rather complicated machinery from [17].

We will opt to solve our technical problem by using solution (1), since we
feel that this makes the proof most accessible to the reader. Those who
object to using resolution of singularities are invited to skip to the proof of
Theorem 3.2 below which requires only the results in [17]. They may then
obtain Theorem 3.1 by adding Theorem 3.2 over all absolute values of K
and applying Theorem 2.3.
With this preamble, we are now ready to begin the proof of Theorem 3.1.

Let

From the definition of To we see that V° is smooth, so applying resolution
of singularities to r allows us to assume that V is smooth without changing
V0. Next we observe that although the map ~: V ~ V is merely rational, it
is a morphism on V0. This means that we can blow-up V to produce:
(i) a smooth projective variety 1,
(ii) a birational morphism 03C8:  ~ V which is an isomorphism on V°,
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(iii) a morphism 03BE:  ~ V which extends the rational map 0 - 03C8:  ~ r.
The existence of a Î with these properties follows from [7] II.7.17.3 and
II.7.16, except that f might be singular. We then use resolution of singularit-
ies to make smooth. In summary, we have a commutative diagram.

where the dashed arrow is a rational map and the solid arrows are morphisms.
This distinction is of crucial importance, because the functoriality of Weil
height functions only works for morphisms, not for rational maps.
Next we choose a divisor E E Div(V) ~ R in the divisor class of q, and

we let H E Div(T) be the ample divisor used to define hT. Our assumption
(23) says that ~*~ - 03B1~ is fibral, so there is a divisor D e Div(T) ~ R with

We also choose an integer n &#x3E; 0 so that the divisors

The height function with respect to a positive divisor is bounded below
off of the support of the divisor, and for an ample divisor is everywhere
bounded,below. So (25) and (26) imply that

Now let x ~ V0 be any point, and let x E f satisfy 03C8() = x. In the following
computation, we write 0(1) for a quantity that is boundable in terms of the
family V- T, the map 0, the divisor class q, and the choice of Weil height
functions hey,7J = hey,E and hT = hT,H. The crucial point is that each 0(l)
bound is independent of x E V0.
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This inequality is valid off of the support of the divisor D. It is now a

standard matter to choose different divisors E in the divisor class of q so as
to move D around and obtain this inequality at all points V°. (See, e.g.,
[15], pages 203-204.) This proves

In order to complete the proof of Theorem 3.1 we need merely apply
Proposition 1.2. More precisely, we match the estimate (28) with (3) in
Proposition 1.2. This allows us to apply inequality (5) from Proposition 1.2,
which yields the desired result

We will now prove the following local version of Theorem 3.1. We will
make extensive use of the notation and results from [17]. We especially refer
the reader to [17], Theorem 7.3 and Corollary 7.4, whose proofs we have
transcribed to our more general setting.

THEOREM 3.2. With notation as above, fix a divisor E E Div(V) ~ R in
the class of q and a Weil local height function 03BBV,E. Let

(The condition that Et be a divisor on rt means that |E| contains no compo-
nents of ort, or equivalently that El U ~ U is a flat family of divisors, see [7],
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III.9.8.5.). Let ~U = T B U be the complement of U, and let Àau be a local
height function associated to a U as described in [17].

It is possible to choose canonical local heights Vt,Et,~t as described in
Theorem 2.1, one for each t E U, in such a way that

Here the constant c depends on the family V ~ T, the map ljJ, the divisor E,
and the choice of local height functions ÀV,E and Aau.

Proof. We replace /!’by the quasi-projective variety 7T-1(U), and replace
E by its restriction to this new V. This does not affect the statement of the
theorem because [17] Section 5 says that our old 03BBV,E and our new 03BBV,E
differ by O(03BB~U). It now follows from the definition of U that 0: V ~ V is
a morphism, and that on every fiber we have cfJi Et --- aEt. Hence there is a
function f E K(V)* ~ R and a fibral divisor F E Div(V) ~ R such that

But the definition of U says that every fiber of V is irreducible, so we can
write F = 03C0*D for a divisor D E Div(U) ~ R, which gives

Now standard properties of local heights, specifically [17] Theorem 5.4,
transforms the divisorial relation (29) into the height relation

We can now repeat the proof of Theorem 2.1, using (30) in place of (16).
This yields

which is almost what we want. To conclude, we note that ~*tEt ~ aEt on
every fiber, so we can repeat the above argument with functions fi, ... , fn
and divisors D1,..., Dn having the property that ~|Di|= 0. Then

is MK-bounded, so



183

4. Variation of the canonical height along sections

we studied how the canonical height and the Weil height differ in a family
of varieties. In this section we give a more precise result for a one-parameter
algebraic family of points. We thus retain the notation from the previous
section with the following additional notation and assumptions:
TlK we assume that the base variety T has dimension 1, so T is a smooth

projective curve.
hT we assume that the Weil height function on T corresponds to a divisor

of degree 1.
P a section P: T - V to the fibration ir: V ~ T. Equivalently, we can

think of the generic fiber V of Y as a variety over the function field
K(T), and then the section P corresponds to a point PV ~ V(K(T)).

The function field (T) is itself a global height field in the usual way,
namely for each point t E T there is an absolute value ordt on K(T) defined
by

ordt(f) = order of vanishing of f at t.

Further, the rational map 0: V ~ V induces a morphism ~V: V ~ V on the
generic fiber, and we have ~*V~v = arw, where qv is the restriction of q to
the generic fiber V. This is all the data that we need to use Theorem 1.1 to
construct the canonical height

We are now ready to state our main result.

THEOREM 4.1. With notation as above,

Remark. In the case that V ~ T is a family of elliptic curves, Tate [22]
proved the stronger result
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where Dp E Div(T) ~ Q is a certain divisor with the property deg Dp =

hv(Pv). This was strengthened by Silverman [20] and was generalized to
families of abelian varieties and to local heights under various hypotheses
by Call [2], Green [6], and Lang [8, 9]. It is natural to ask whether Theorem
4.1 is true in the stronger form

where the divisor Dp depends on V, T, ~, 0, P and satisfies deg Dp =

V,~V,~V(PV). Using current methods, the existence of such a formula

would seem to depend on the construction of a "good" model for V ~ T
such that the rational map 0 behaves nicely on V. It is not at all clear

whether such good models will exist. It would be interesting to test (31)
numerically, say for the K3 surfaces described in [19] and Example 2. This is
one reason we are interested in developing an efficient algorithm to compute
canonical heights, similar to the algorithms for elliptic curves described in
[18]. We will describe such an algorithm theoretically in Section 5. For a
more detailed discussion and implementation for K3 surfaces, see [3].

Proof. (of Theorem 4.1). We begin by gathering together several results.
First, from Theorem 3.1 we have

In particular, (32) is true for x = P,. Note that the constants cl and C2 are
independent of both t and x. Second, we apply functoriality of Weil heights
to the morphism P : T ~ V. Note that P will be a morphism because we have
assumed that T is a smooth curve, so any rational map from T to a variety
is automatically a morphism. This gives

As our notation indicates, the constant c3(P) will depend on the section P,
but it is independent of t. Third, we use [8], Chapter 3, Proposition 3.2 to
describe the Weil height hV,~V on the generic fiber in terms of intersection
theory,

Fourth, we apply Theorem 1.1 (i) to the height V,~v,~V on the generic fiber,
which gives
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Using the four estimates (32), (33), (34), (35) and the triangle inequality,
we compute

We now divide this inequality by hT(t) and let hT(t) ~ ~. This gives

Notice that the term c3(P) which depended on P has disappeared. Further,
it follows from [8], Chapter 4, Corollary 3.5 that the heights hT,p*7J and
(deg P*TJ)hT(t) are quasi-equivalent, and so

This gives the fundamental estimate

Note that the remaining constants ci, c4, C5 in (36) are independent of
both the section P and the point t. So we can apply (36) with P replaced by
ljJnp. Theorem 1.1 says that the canonical heights satisfy
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so we finally obtain

The right-hand side of (37) is independent of n, while a &#x3E; 1, so letting n ~ ~
gives the desired result

5. A convergent séries for the canonical local height

In this section we will derive a rapidly convergent series which can be used
to compute the canonical local heights V,~,E described in Section 2. The
basic methods we use are generalizations of the ideas developed by Tate [21]
and Silverman [18] for computing canonical heights on elliptic curves.

Remark. One can always find a finite collection of functions fij E K(V) ~ R
so that

is a Weil local height function for E. (See [8], Chapter 10, Proposition 3.2
and Theorem 3.5.) Since any two Weil local heights for the same divisor are
MK-bounded, we see that for all but finitely many v E MK there is an exact
formula

The series we give below is thus useful for computing V,E,~ for the finitely
many exceptional v, which includes especially all archimedean v. Then by
adding (38) over the "good" v and the series given below for the "bad" v,
one is able to efficiently compute the canonical height V,~,~. An alternative
method for computing the "bad" non-archimedean v in terms of intersection
theory is described in Section 6.

Tate’s original series for Â on the elliptic curve only converges under a
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fairly stringent hypothesis, but it has the advantage of being easy to describe
and implement. We will begin by giving the analogous series in our more
general situation. This will help explain the main ideas before we get en-
meshed in the fairly complicated modifications needed to ensure convergence
in all cases.

We continue with the notation set in Section 2. In particular, ~: V ~ V is
a morphism and E e Div(V) 0 R is a divisor satisfying ~*E ~ aE. We will
assume that E is defined over K, and we fix a rational function f ~ K(V)*
0 R satisfying

We also fix an absolute value v on K, and throughout this section we will
omit both v and V from our notation for local height functions. For example,
we will write 03BBD(P) for the local height function Av,D(P, v) on V(Kv).
Next we choose a function t E K(V)* ~ R and write its divisor as

We use t to define two other functions z, w E K(V)* ~ R by the formulas

or equivalently,

Using (39), (40), and (41) we can compute the divisors of w and z:

Note in particular that the support of div(z) is contained in IDI U |~*D|.
This means that |v(z(P))| will be bounded as long as P and OP are not
v-adically close to ID 1. In order to implement the series for E,~ it is necessary
to find an expression for z which reflects this fact. In other words, z is defined
in (41) as a quotient, and one must explicitly write out to 0 in such a way
that it partially cancels out the f · t°. One should not to try to compute v(z)
by computing each of the three terms in v(f) + 03B1v(t) - v(t ° ljJ), since if either
P or OP is v-adically close to E then two of the terms may be large while
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their sum/difference could be very small. We will illustrate this remark below

when we discuss the case of elliptic curves.
Having fixed the function f satisfying (39), we can use Theorem 2.1(b) to

produce a canonical height E,~ satisfying

(This is the function denoted by V,E,~,f in Theorem 2.1, but having fixed V
and f, we will drop them from our notation.) We use (42) to rewrite (44) as

Following Tate, this suggests we define a function g by the formula

and then (45) becomes

It is now easy to verify that

since if we substitute (47) into the right-hand side of (48) we get a telescoping
sum. It is tempting to let N ~ ~ in (48), but some additional hypothesis is
necessary to ensure convergence.

PROPOSITION 5.1. (aprés Tate) With notation as above, suppose that the
divisor D has the property that

(a) The series

is absolutely convergent for all P~V(Kv)B|E|. More precisely, the nth term
of this series has magnitude less than O(03B1-n), where the big-O constant is
independent of both P and n.
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Proof. The fact that IDI ~ V(K,)=0 and that V(Kv) is compact means that
there is a strictly positive v-adic "distance" between IDI and V(Kv). In
particular, if we fix a local height 03BBD, then

Here and in what follows the O(1)’s are bounded independently of the choice
of points in V(K,). Next we use (43) to write

Applying (49) to both Q and ~Q, we deduce that

Similarly, (40) tells us that

(Note that E,~ is a Weil local height for E by Theorem 2.1.) It follows from
(46) and (49) that

We now consider the sum (48) giving 03BC(P) for a point P ~ V(Kv). It

follows from (50) and (51) that

are bounded independently of P, n, and
N.

Hence if we let N ~ ~ in (48), the remainder term 03B1-N03BC(~NP) will go to 0
and we get an absolutely convergent series
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whose individual terms satisfy

This proves (a), and (b) then follows immediately from the definition (46)
of the function li. D

Example 4. We illustrate Proposition 5.1 by considering an elliptic curve

together with it duplication map cp(P) = [2]P. We let E = (0) be our divisor
and note that

so in the notation of Proposition 5.1 we have « = 4 and f = 2y + a1x + a3.
We choose our function t to be t = x -lI2, so

Here R and R’ are the two points of V with x = 0 and y satisfying
y2 + a3y - a6 = 0. So the hypothesis of Proposition 5.1 will be satisfied if

R, 7?’ (E V(Kv), or equivalently if a23 + 4a6 is not a square in Kv. Clearly, if
Kv = C, then we are stuck. But, for example, if Kv = R, then Tate observed
that by making a change of variables x = x’ - r with r sufficiently large, one
can ensure that the new Weierstrass equation satisfies a’23 + 4a6  0, and so

Proposition 5.1 can be used.
However, in order to use Proposition 5.1 in practice it is necesasry to write

the function z in such a way that v(z(Q)) remains bounded even when the
point Q is v-adically close to JE 1. Now z = f · t03B1/t o 0. In our situation it is
easier notationally to work with t2 and Z2@ so we write

Now we use the duplication formula [16] 111.2.3, which says that
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Here b2, b4, b6, b8 are the usual quantities associated to the Weierstrass
equation, see [16] III §1. Substituting this into (53) gives

Similarly,

These two formulas (54) and (55) let one easily compute Z2(Q) and w2(Q)
from the value of t2(Q), and then (42) says that t2(~Q) = w2(Q)lz2(Q), so
one immediately gets the value of t2 for the next term in the series for 03BC(P).
The key here is that t is uniformly bounded away from 00 and z is uniformly
bounded away from 0 and 00 on all of V(R). The algorithm we have just
described for computing the canonical local height on the R points of an
elliptic curve is exactly Tate’s method (unpublished [21]) as described in [18].

Proposition 5.1 provides a rapidly convergent series for E,~ provided
we can find a function t with div(t) = E - D satisfying |D| fl V(Kv) = 0.
Unfortunately, this is often impossible, either because of the particular form
of the divisor E or because the field Kv is algebraically closed. We are now
going to describe a modification of the series in Proposition 5.1 which will
converge even without the hypothesis that IDI ~ V(Kv) = 0. This generalizes
the case of elliptic curves that was treated in [18].

In order to describe this modification we need a way of measuring the
v-adic distance from a point P E V(Kv) to the support of a divisor D. We
begin by writing D as

Then the support of D is )D ) = ~|Ak|, so it is reasonable to define the local
height corresponding to the support of D by the formula
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Notice in particular that 03BB|D|(P) will be large if and only if P is v-adically
close to at least one of the Ak’s .

This serves to define ÀIDI theoretically, but in order to implement our
algorithm for the canonical local height we will need to actually compute the
value of ÀIDI at particular points. From (56) it suffices to compute 03BBA for a

given irreducible divisor A E Div(V), and to do this we need merely follow
the prescription given in [8], Chapter 10, Section 3. If A is very ample, or
more generally if the linear system associated to A has no base points, this
is particularly easy. Namely choose divisors A1, ..., An linearly equivalent
to A satisfying ~|Ai| = 0, and write A - Ai = div(fi). Then one can take

And of course if A is merely ample, then mA is very ample for some m &#x3E; 0

and one can take 03BBA = m -1 ÀmA. In general, one finds a collection of positive
divisors B1,..., Bn and C1, ... , Cm satisfying n|Bi| = ~lCj| =  and

A + Ci - Bi. Then one chooses rational functions fij E K(V) with div(fij) =
A - Bi + Ci and uses them to define the local height

The series in Proposition 5.1 leads to difficulties if some multiple cPn P is
v-adically close to IDI. The solution to this problem is to take several func-
tions t1, ... , tr with divisors div(ti ) = E - Di satisfying ~|Di| = 0. Then each
ljJn P is v-adically far away from at least one Di, so we need to modify the
series to allow us to use different ,zi’s for different ljJn P’s. With this brief
motivation, we now give the details of how this is implemented.
We begin by choosing rational functions t1,..., tr e K(V)* ~ R satisfying

(N.B. We are not requiring that the D¡’s be effective.) For each i we define
as before the functions
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or equivalently,

Using (39), (57) and (58) we compute the divisors of w; and zi to be

For each i we define a function iii by the formula

Then the functional equation (44) for E,~ combined with the expression (59)
for f gives the functional equation for 03BCi,

The next step is to relate the 1£i’s to one another, because we want to

replace the earlier sum (48) for ii with a sum in which the terms switch

between the various 03BCi’s. The first observation is that E,~ does not depend
on i, so the definition (61) of gi gives

Next we want a functional equation like (62) but involving gi and iij.

To ease notation we write this as
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Using (60) we find that Sij has divisor

For each divisor Di we fix a distance function ÀIDil as described above, and
then for any constant K we define subsets of V(Kv),

The following lemma provides the estimates we will need to prove that our
series for E,~ converges.

LEMMA 5.2. (a) There exists a constant Kl such that

(b) There exist constants K2, K3 such that

In particular,

(c) There exist constants K4, K5 such that if Q E V (Kv) is any point satisfying

then

Proof. (a) We know that nlDil =  from (57), so [8], Chapter 10, Corollary
3.3 says that there is a constant Kl such that
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Hence every point of V(Kv) is in at least one Ui(K1)’
(b) Theorem 2.1 says that E,~ is a Weil local height for the divisor E,

while (57) tells us that v 0 ti is a Weil local height for the divisor E - Di. It
follows from (61) that 03BCi is a Weil local height for the divisor aDl, so

This proves the first half of (b), and the second half follows from this and
the definition of the Ut(K)’s.

(c) The assumption that Q E U;(K) and q5Q e Uj(03BA) implies in particular
that Q ~ |Di| and ~Q ~ IDjl, so (65) shows that Q ~ |div(sij)|. In particular,
Sij is defined at Q (and not equal to 0 or (~). Now we compute

Now let io, i1, i2, ... be any sequence of indices with each in between 1 and
r. We claim that for any N  0 there is an identity

analogous to our earlier identity (48). To verify (66) we use (64) to write

Substituting (67) into the right-hand side of (66) gives a telescoping sum
whose only remaining term is gi,,(P).

In order to use (66) to compute 03BCi0(P), we want to choose the indices io,
il, ... so that the remainder term 03B1-N03BCiN(~NP) goes rapidly to 0. Lemma
5.2(b) tells us what to do, namely choose iN so that ONP is in UiN(K). By
Lemma 5.2(a), this will be possible if we take K = Kl sufficiently large, but
in practice we do not have an explicit value for Kl. However, this is irrelevant,
since what we really want to do is choose iN so that ONP is in UIN(K) for the
smallest possible K, which means finding the index i which minimizes

03BB|Di|(~NP). This is what we do in the following theorem which describes an
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explicit procedure for choosing the in’s to give a rapidly convergent series
for E,~.
THEOREM 5.3. Let P E V(Kv) B 1 El be given. With notatl’on as above,
define a sequence of indices io, il, ... (depending on P) by the prescription

(If there is any ambiguity, take the smallest possible in.)
(a) For every n : 0, the function sinin+1 is defined at ~nP. Further, the

sequence of real numbers

is bounded independently of n and P.

where the big-O constant is independent of both P and N.
Remark. Just as with Proposition 5.1, in order to successfully implement

Theorem 5.3 it is necessary to write out the functions si, explicitly so that
they can actually be evaluated at every point at which they are defined.
There are also various ways of speeding up the computation without affecting
the basic convergence of the series. For example, it might make sense to set
in+1 equal to the first i for which 03C0|Di|(~n+1P) is not too large, say less than
10. This may obviate the need to compute most of the kl Dil (cfJ"+lp)’S. Further,
one should probably start by checking if i = in will do, since if one can take
in+1 = in, then sinin+1 = Sinin = zi,, is easier to compute.

Proof. (of Theorem 5.3). Let K1 be the constant described in Lemma
5.2(a). Then Lemma 5.2(a) and the definition of Ui(03BA) tell us that

It follows from the definition (68) of the 1,,’s that for all n : 0,

Now Lemma 5.2(b) implies that
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Similarly, Lemma 5.2(c) tells us that

and that Sinin+1 is defined at ~nP. This proves (a).
Next comparing the definition of the c,,’s with the formula (66) for 1£i, we

see that

Now (69), (70), and the definition (61) of i£i give

This completes the proof of (b). D

Example 4 (continued). We again let V be an elliptic curve given by a
Weierstrass equation (52), E be the divisor (0), and 0 = [2] be the duplic-
ation map. To illustrate Theorem 5.3 we take the two functions

These functions have divisors

Here R1 and Ri are the points with x = 0, and R2 and R2 are the points with
x = 1, so clearly |D1| n /D21 = 0. The formulas (54) and (55) from above give
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Similarly one finds

where h2, b’4, b:’, b’8 are the quantities associated to the Weierstrass equation
(52) after making the substitution x = x’ + 1. Using these and the relation
t2 = t21(1 - t2 1), it is not hard to derive formulas for the Si/S. For example,

and similarly s21 = Z2 + w2. It is now an easy matter to implement the
algorithm described in Theorem 5.3 to compute the local height on an elliptic
curve, even in the case Kv = C where Proposition 5.1 is not applicable.
Details of this example may be found in [18].

Example 5. We return to the K3 surface S described in Example 2. In this
case the automorphism ~: S ~ S is the composition of two involutions

~ = 03C32 o 03C31. Further, the divisor classes ~+ and ~- are interchanged by
03C31, 03C32, for example 03C3*2~+ = 03B2~-. Applying first 03C31 and then 03C32, it is not

hard to make all of the constructions in this section completely explicit. For
a description of the resulting series suitable for computer implementation,
together with additional formulas and several numeric examples, see [3].

6. Canonical local heights as intersection multiplicities

Fix an absolute value v on K and let Ov denote the ring of v-integers in K.
If A is an abelian variety over K, Néron (see [23] and [8], Chapter 11, Section
5) showed that any canonical local height v) can be interpreted as
an intersection multiplicity on the special fiber of the Néron model of A over
Spec(Ov). In Theorem 6.1 we extend Néron’s result to show that if the pair
(V, 0) has a certain weak Néron model over Spec(Ov), then the canonical
local height V,E,~(·, v) can be computed as an intersection multiplicity.
We continue with the notation used in previous sections, but we add the

assumption that the morphism 0: V ~ Vis finite. As in Section 5, we assume
that E is defined over K, where E E Div( V) ~ (R is a divisor satisfying
~*E ~ aE with a &#x3E; 1.
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Let S = Spec(Ov). We will say that a smooth scheme V/S is a weak Néron
model for (VlK, ~) over S if it satisfies the following axioms:
(1) The generic fiber of rIS, denoted VK, is V.
(2) V(S) ~ V(K). In other words, every point P E V (K) extends to a section

P: S ~ V.

(3) There exists a finite morphism 03A6: 7’/S ~ V/S whose restriction to the

generic fiber is 0.
We remark that axioms 2 and 3 impose opposing requirements on V/S.
Axiom 2 demands that ’V has enough points over S so that every K-rational
point on V extends to a section. On the other hand, axiom 3 asks that V/S
not be so large that the rational map on V induced by ~ cannot be extended
to a finite morphism. Note that the Néron model of an abelian variety A/K
is a weak Néron model for (AlK, [n]) for all n  2. For an alternative notion
of weak Néron model, see Bosch-Lütkebohmert-Raynaud [1].
Henceforth we will assume that (V, ~) has a weak Néron model V/S. Let

’Jl’s denote the special fiber of rand write

where V1s, ... , V11s E Div(V) are the irreducible components of Vs. Let W
be a prime divisor on V which is rational over K. Observe that the closure
of W in V, denoted W, is a prime divisor on V. Extending this process by
linearity, we obtain a natural injection

called the thickening map. Similarly, given a point P E V(K), we write P =

P(S) to denote the image of the section P in "/;1’. Note that the divisor group
on S is a cyclic group generated by the special point (s). Hence, for any
D E Div(V)K and any P E V (K) which does not lie on the support of D, we
may define the intersection multiplicity i(D, P) (also denoted P. D) by

With these notations in hand, we can now state the main result of this
section.

THEOREM 6.1. Suppose rIs is a weak Néron model for (VIK, 0) over 0,.
Let V,E,~ be a canonical local height as constructed in Theorem 2.1. Then
there exist real numbers 03B31,..., ’Yll so that for all P E V(K) B lEI,
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A key point in the proof of Theorem 6.1 is to describe the action of 4Y on
the set of irreducible components {V1s ..., Z°’°?) of Vs. Since 4S is a finite
morphism, it maps each irreducible component of Vs onto another irreducible
component (possibly the same component) of Vs. Let N = {1,..., n}. Then

Note that A need not be a permutation of N, since 4Y may map several
components onto the same component. However, we can identify A with a
matrix of the following type.

DEFINITION. A square matrix M is a permutation-type matrix if every
column of M has exactly one 1 and all other entries are 0.

Identify each j ~ N with the n-by-1 column vector ej which has a 1 as its
jth entry and zeros elsewhere. Then the map A : N ~ N corresponds to a
unique n-by-n permutation-type matrix, which by abuse of notation we will
also denote by A. Thus, A( j) = Aej.

LEMMA 6.2. (a) Fix m : 1. Then the set of all m-by-m permutation-type
matrices forms a finite monoid under matrix multiplication.

(b) Every eigenvalue of a permutation-type matrix is either zero or a root
of unity.

Proof. It is clear that there are only finitely many (in fact mm) m-by-m
permutation-type matrices. Suppose B = (bij) and C = (cij) are m-by-m per-
mutation-type matrices. Fix k, 1  k  m. By the definition of permutation-
type matrix, there is a (unique) jo, 1 % jo % m, such that c;ok = 1 and Cjk = 0
for all j ~ jo. Then

Hence, the joth column of B becomes the kth column of BC. Therefore, the
set of m-by-m permutation-type matrices is closed under multiplication, and
thus it is a monoid.

To prove (b), let M be any permutation-type matrix. Since M lies in a
finite monoid, there exist integers q, r &#x3E; 0 such that Mr+q = M". Suppose
v ~ 0 is an eigenvector of M with eigenvalue 03BC. Then 03BCr+qV = 03BCrV, so

- 1)v = 0. Since v ~ 0, we have 03BC = 0 or li" = 1 with q &#x3E; 0. 



201

Proof. (of Theorem 6.1). Since E is assumed to be rational over K, we
may fix a rational function f E K(V)*~R so that

Since K(V) ~ K(V), we may also regard f as an element of K(V)* ~R.
Then the divisors of f on V and V differ by a divisor supported on the special
fiber, say

for some constants m(j, f) E R.
By Theorem 2.1(b), there is a unique canonical local height ÀE = À V,E,cp,f

which satisfies

Recall from Theorem 2.1 (a) that the difference between any canonical local
height À V,E,q, and the particular canonical local height AE is a constant of the
form v(b), where b E K * ~ R. Hence, it suffices to prove that there are real
numbers yi,..., 03B3n so that the function ÂE satisfies (71).

Consider the map V(K) B JE ~ R defined by P -+ i(E, P) = P. E. Given
any P E V(K) B |E|, there is a pair ( U, g) representing É such that U ~ ris
an open neighborhood of P and g(P) ~ 0, 00. Then, by definition, i(E, P) =
v(g(P)) . In particular, i(E, P) is independent of the chosen pair ( U, g). Thus,
the map P ~ i(E, P) is a Weil local height for E on V (K).
Note that 03A6*E and ljJ* E differ by a divisor supported on the special fiber,

since 4$ and 0 are the same on the generic fiber. Combining this fact with
(72), we have

for some constants nj E R. Further, 03A6*P = 03A6*P(S) = 03A6 o P(S) =
OP(S) = OP, where OP is the section corresponding to OP. Hence,

Intersecting both sides of (73) with P yields:
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Now, intersecting both sides of (75) with P and applying (76) and (77), we
conclude

where cj = m(j, f ) + n; are constants which depend on E, 0 and f, but are
independent of P. In particular, we see that (78) holds for all P E V(K) for
which the intersection multiplicities i(E, OP) and i(E, P) are defined; i. e. ,
for all P ~ |E| ~ |~*E|.

Next, we will show that one can choose real numbers xl , ... , x" so that
the function

satisfies

for all Using (79) and (78), we compute

Recall that 4$ determines a permutation-type matrix A = AD defined by

Since P and ~P = 03A6(P) intersect the components of II’s transversally, it

follows from the definition of A that if P(s) E r;, then
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Therefore, it suffices to find constants xl , ... , x,, such that

Writing xi , ... , xn and cl , ... , c" as column vectors, we can combine these
n equations into a matrix equation

Lemma 6.2(b) tells us that the eigenvalues of the permutation-type matrix
A are zero or roots of unity, while a&#x3E; 1 by hypothesis. Therefore

det(aI - A) =1= 0, so aI - A is invertible and we may take x = (aI - A)-IC.
This finishes the proof that we can choose xl, ... , x" so that the function
AE defined by (79) satisfies the relation (80).
To complete the proof of Theorem 6.1 we will show that

E(P, v) = AE(P) for all P E V(K) B |E|. Since E(·, v) and i(E, .) are both
Weil local heights for E, their différence E(·, v) - i (E, .) has a unique v-
continuous extension to a bounded v-continuous function defined on all of

V(K) (see [8], Chapter 10, Propositions 1.5 and 2.3). Hence, by (79), we
see that the map LE(P) = ÂE(P, v) - AE(P) extends to a bounded function
on V(K). Furthermore, since E and AE were chosen to satisfy (74) and (80),
it follows that

Therefore, for any P E V(K),

where the ~ constant is independent of N. We conclude LE~0, so

E(P, v) = AE(P) for all P E V(K), P fi |E|. 0

We can use Theorem 6.1 to show that the difference between a canonical
local height and a Weil local height varies more-or-less periodically with 0.
This had been noted earlier for abelian varieties (e.g., [8], Chapter 11,
Theorem 5.2) and has been verified experimentally in some cases for K3
surfaces [3].
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COROLLARY 6.3. Suppose that ( Vl K, ~) has a weak Néron model ’VIS
over Ov. Choose a canonical local height Â V,E,q, and define a correction factor

Then there are integers t : 0 and r . 1 such that

Further, if 0 is an automorphism, then one can take t = 0, so

Proof. From Theorem 6.1 and the definition of 5 we have

for certain real numbers yi,... , y,,. The section P hits exactly one of the
components on the special fiber, say P(s) e ’Vk. Then 5(P) = Yk. Further,
as in the proof of Theorem 6.1 there is a map A: {1,..., n} ~ {1,..., n}
corresponding to a permutation-type matrix such that 5( ~P) = 03B3A(k). Apply-
ing this repeatedly, we find

From Lemma 6.2(a) we know that A belongs to a finite monoid, so there
are integers t  0 and r  1 such that At+r = At. Using this in (82) gives the
first half of Corollary 6.3. Finally, if 0 is an automorphism, then we can
replace P by 0-’P to get the second half. D

Acknowledgements

We would like to thank Yuri Manin for his suggestion that the construction
in [19] could be generalized to the situation described in Section 1 of this
paper.



205

References

1. Bosch, S., Lütkebohmert, W., and Raynaud, M.: Néron Models. Springer-Verlag, Berlin,
(1990).

2. Call, G.: Variation of local heights on an algebraic family of abelian varieties. Théorie des
Nombres, Berlin, (1989).

3. Call, G. and Silverman, J.: Computing canonical heights on K3 surfaces, in preparation.
4. Dem’janenko, V.A.: An estimate of the remainder term in Tate’s formula (Russian), Mat.

Zametki 3 (1968) 271-278.
5. Dem’janenko, V.A.: Rational points of a class of algebraic curves, AMS Translations (2)

66 (1968) 246-272.
6. Green, W.: Heights in families of abelian varieties, Duke Math. J. 58 (1989) 617-632.
7. Hartshorne, R.: Algebraic Geometry, Springer-Verlag, New York, (1977).
8. Lang, S.: Fundamentals of Diophantine Geometry, New York, (1983).
9. Lang, S.: Number Theory III: Diophantine Geometry. Encycl. Math. Sci. v. 60, Springer-

Verlag, Berlin, (1991).
10. Lewis, D.J.: Invariant sets of morphisms on projective and affine number spaces, J. Algebra

20 (1972) 419-434.
11. Manin, Ju.: The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk. SSSR

33 (1969) 433-438.
12. Manin, Ju. and Zarhin, Ju.: Height on families of abelian varieties, Math. USSR Sbor. 18

(1972) 169-179.
13. Narkiewicz, W.: On polynomial transformations in several variables, Acta Arith. 11 (1965)

163-168.
14. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math. 82

(1965) 249-331.
15. Silverman, J.H.: Heights and the specialization map for families of abelian varieties, J.

Reine Angew. Math. 342 (1983) 197-211.
16. Silverman, J.H.: The Arithmetic of Elliptic Curves, Springer, New York, (1986).
17. Silverman, J.H.: Arithmetic distance functions and height functions in Diophantine geome-

try, Math. Ann. 279 (1987) 193-216.
18. Silverman, J.H.: Computing heights on elliptic curves, Math. Comp. 51 (1988) 339-358.
19. Silverman, J.H.: Rational points on K3 surfaces: A new canonical height, Invent. Math.

105 (1991) 347-373.
20. Silverman, J.H.: Variation of the canonical height on elliptic surfaces I: Three examples,

J. Reine Angew. Math. 426 (1992) 151-178.
21. Tate, J.: Letter to J.-P. Serre, Oct. 1, (1979).
22. Tate, J.: Variation of the canonical height of a point depending on a parameter, Amer. J.

Math. 105 (1983) 287-294.
23. Wehler, J.: K3-surfaces with Picard number 2, Arch. Math. 50 (1988) 73-82.
24. Wehler, J.: Hypersurfaces of the Flag Variety, Math. Zeit. 198 (1988) 21-38.
25. Zimmer, H.: On the difference of the Weil height and the Néron-Tate height, Math. Z.

174 (1976) 35-51.

Added in proof

After this paper was accepted for publication, the authors became aware of
two related papers. D. G. Northcott, Annals Math 5 (1950) 167-177, gives
a proof of the finiteness result (Corollary l.l.lb) which we had attributed to
Narkiewicz and Lewis. L. Denis, Math. Ann. 294 (1992) 213-223, constructs
canonical heights on Drin’feld modules similar to our construction in Theo-
rem 1.1.


