The structure of ideals in the Banach algebra of Lipschitz functions over valued fields
Compositio Mathematica, Tome 48 (1983) no. 1, pp. 25-34.
@article{CM_1983__48_1_25_0,
     author = {Bhaskaran, R.},
     title = {The structure of ideals in the {Banach} algebra of {Lipschitz} functions over valued fields},
     journal = {Compositio Mathematica},
     pages = {25--34},
     publisher = {Martinus Nijhoff Publishers},
     volume = {48},
     number = {1},
     year = {1983},
     mrnumber = {700578},
     zbl = {0507.46065},
     language = {en},
     url = {http://www.numdam.org/item/CM_1983__48_1_25_0/}
}
TY  - JOUR
AU  - Bhaskaran, R.
TI  - The structure of ideals in the Banach algebra of Lipschitz functions over valued fields
JO  - Compositio Mathematica
PY  - 1983
SP  - 25
EP  - 34
VL  - 48
IS  - 1
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1983__48_1_25_0/
LA  - en
ID  - CM_1983__48_1_25_0
ER  - 
%0 Journal Article
%A Bhaskaran, R.
%T The structure of ideals in the Banach algebra of Lipschitz functions over valued fields
%J Compositio Mathematica
%D 1983
%P 25-34
%V 48
%N 1
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1983__48_1_25_0/
%G en
%F CM_1983__48_1_25_0
Bhaskaran, R. The structure of ideals in the Banach algebra of Lipschitz functions over valued fields. Compositio Mathematica, Tome 48 (1983) no. 1, pp. 25-34. http://www.numdam.org/item/CM_1983__48_1_25_0/

[1] G. Bachman, E. Beckenstein, L. Narici andSeth Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112. | MR | Zbl

[2] E. Beckenstein, G. Bachman and L. Narici, Topological algebras of continuous functions over valued fields, Studia Math. XLVIII (1973), 119-127. | MR | Zbl

[3] E. Beckenstein, G. Bachman and L. Narici, Function algebras over valued fields with measures IV, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 53 (5) (1972), 349-358. | MR | Zbl

[4] R. Bhaskaran and U. Naik-Nimbalkar, Banach algebras of Lipschitz functions over valued fields, Indag. Math. 40 (1978), 15-26. | MR | Zbl

[5] L. Gruson and M. Van Der Put, Banach spaces, Bull. Soc. Math. France, Memoire 39-40 (1974), 55-100. | Numdam | MR | Zbl

[6] A.W. Ingleton, The Hahn-Banach theorem for non-archimedean valued fields, Proc. Cambridge Phil. Soc. 48 (1952), 41-45. | MR | Zbl

[7] T.M. Jenkins, Banach spaces of Lipschitz functions on an abstract metric space, Thesis, Yale University, 1967.

[8] L.H. Loomis, An Introduction to Abstract Harmonic Analysis, van Nostrand, 1953. | MR | Zbl

[9] A.F. Monna, Analyse non-archimedienne, Springer-Verlag, 1970. | MR | Zbl

[10] L. Narici, E. Beckenstein and G. Bachman, Functional Analysis and Valuation Theory, Marcel Dekker, 1971. | MR | Zbl

[11] W.H. Schikhof, Non-archimedean Harmonic analysis, Thesis, Nijmegen, 1967. | Zbl

[12] D.R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. | MR | Zbl

[13] G. Silov, Homogeneous rings of functions, Amer. Math. Soc. Transl.No. 92, 1953, Reprint Amer. Math. Soc. Transl. (1) (1962), 392-455. | MR | Zbl

[14] G.F. Simmons, Introduction to topology and modern Analysis, McGraw Hill, 1963. | MR | Zbl

[15] A.C.M. Van Rooij, Non-archimedean Functional Analysis, Lecture Notes, Catholic University, Nijmegen, 1976.

[16] A.C.M. Van Rooij, Non-archimedean Functional Analysis, Marcel Dekker, 1978. | MR | Zbl

[17] L. Waelbroeck, Closed ideals of Lipschitz functions, Proceedings of the International Symposium on Function algebras, Tulane University, 1965, 322-325. | MR | Zbl