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Introduction

The aim of the paper is to present a study (§3) of the structure of
closed ideals of the Banach algebra of Lipschitz functions defined on a
complete ultrametric space. We start with the extension problem of
Lipschitz functions (§1) followed by general theory of Gelfand ideals of a
non-archimedean weakly regular (Definition 4.1, [4]) Banach algebra
(§2).
We recall that the space Lip(X, d) of all Lipschitz functions (functions

for which both ~f~~, Ilflld are finite) on an ultrametric space (X, d) (we
continue to assume without loss of generality that (X, d) is complete and
d ~ 1 as in [4]) is a Banach algebra with pointwise multiplication and
the norm ~·Il defined by llfll = max(~f~~, ~f~d), where ~f~~
=sup{|f(x)|:x~X} and ~f~d =sup{|f(x)-f(y)|/d(x,y):x,y~X,x~y}.

lip(X,d)={f~Lip(X,d): lim (|f(x)-f(y)|/d(x,y))=0} is a closed sub-

algebra of Lip(X, d). The notation and terminology are as in [4].
The material forms a portion of the author’s Ph.D. thesis approved

by the University of Madras. The author is thankful to Dr. G. Rangan
for many useful suggestions.

§1. The Extension Problem

The problem under consideration is about the extension of a

Lipschitz function on a subspace (Y, d), to a Lipschitz function on (X, d)
without altering the norms. The solution is similar to that of the Hahn-
Banach extension problem by Ingleton [6]. For any positive real
number k, define the truncation (1kf) of f at k by
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For any x, y E X, we have

i.e. the truncation (Tkf) is a Lipschitz function whenever f is so.

DEFINITION 1.1: A non-archimedean valued field F is said to have

"Lipschitz extension property" if, given a subspace (Y, d) of (X, d) and
any f E Lip( Y, d), there exists f * E Lip(X, d) such that i) f *(y) = f(y), y E Y;
ii) ~f*~~= Ilfll. and iii) llf*lld = Ilflid.

The following theorem characterizes the fields possessing Lipschitz
extension property.

THEOREM 1.2: F has Lipschitz extension property f and only if F is

spherically complete.

PROOF: Let F be spherically complete, (1’: d) be a subspace of (X, d)
and f E Lip( 1: d). If x~XBY, consider the nest of closed spheres
{C03B5y(f(y)):y~ Y} in F, where ey = ~f~d d(x, y). By the spherical complete-
ness of F, we have a E n C03B5y(f(y)). Define f1:{Y, x} ~ F by

yEY

Clearly |f1(y)-f1(y’) 1 :::; Ilflld d(y, y’), y, y’ E {Y, x} and so the truncation
of fl at "flloo gives us an extension of f to a Lipschitz function on {Y,x}.
An application of Zorn’s lemma now yields the required extension to
the whole of (X, d).
Suppose F is not spherically complete then F is not pseudo-complete

([10], p. 34). Consider the metric space X=FQ5F, Y = F identified by
the map 03B1 ~ (a, 0) as a subspace of X and the metric on X is defined as
in the proof of Ingleton’s theorem [6]. Let {(03B1n, 0)} be the pseudo-
cauchy sequence which is not pseudo-convergent in F. If M &#x3E; 0 be such
that d((03B1n, 0), (am, 0)) ~ M, n, m~N, define f : Y- F by
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It is easily verified that f~Lip(Y,d) with ~f~~  M and Ilflld = 1. As in
the proof of Ingleton’s theorem (loc. cit) we can show that f can not be
extended as desired. The proof is now complete.

REMARK 1.3: In the context of extension, for the real case (see [12])
we do not require any additional assumptions while for the complex
case, the possibility of extension require (as shown by Jenkins [7]) the
Lipschitz four point property and Euclidean four point property.
The following theorems, suggested by Prof. van der Put in a private

communication to the author, gives sufficient conditions on the metric
space for the extension of a Lipschitz function on a subspace to the
whole space.

THEOREM 1.4: If every strictly decreasing sequence of values of d has
limit zero, i.e. if {d(xn, yn)} is strictly decreasing then lim d(xn, Yn) = 0, then
every Lipschitz function f on a subspace (Y, d) can be extended to the
whole of (X, d) as a Lipschitz function with norms preserved.

PROOF: We assume, as we may, that Y is closed. By hypothesis if

x ~ XBY, there exists y E Y such that d(x, Y) = d(x, y). f * : X - F defined
by

is the required extension.

Using the above theorem and a slight modification of the proof of
Lemma 3.14(iii), p. 66, [16], we have another theorem on the extension
of Lipschitz functions.

THEOREM 1.5: If a subspace (Y, d) of (X, d) is spherically complete, then
every f E Lip(Y, d) can be extended to f * E Lip(X, d) with norms preserved.

§2. Gelfand Ideal Space, Weak Regularity and Silov Ideals

In this section we present first improved versions of certain known
results (Theorems 3.5, 3.6 and 4.3 of [4]), in the case of an arbitrary non-
archimedean Banach algebra. These results are used to show that the
Silov ideals J(K) of a non-archimedean weakly regular Banach algebra
are smallest in some sense. In fact the proof of this result is much differ-
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ent from the classical case in the absence of a smooth theory of in-
tegration of vector valued analytic functions.

Let X be any set and A any algebra with identity of complex valued
bounded functions on X which separate points of X, is self-adjoint (i.e.
closed under complex conjugation) and is inversely closed (i.e. tif E A if
f E A and If(x) | ~ e &#x3E; 0, x ~X). It is known ([8], p. 55) that i) X is dense
in the maximal ideal space M of A with respect to the Gelfand topology
and ii) if X is a compact Hausdorff space, then X can be identified with
M. In the absence of a process analogous to conjugation we resort to an
alternative approach, which as it appears can neither be adapted nor is
an adaptation of the classic-al case.
We start with the following theorem, more general then Theorem 3,

p. 154, [10], which can be easily proved on the same lines.

THEOREM 2.1: Let X be any compact zero-dimensional Hausdorff space
and A any algebra with identity of continuous F-valued functions on X
such that A separate points of X strongly and is inversely closed, then X
can be identified, in a natural way, with the Gelfand ideal space of A.

COROLLARY 2.2: Let X be any set and A any algebra with identity of
bounded F-valued functions on X such that A separate points of X strong-
ly and is inversely closed. If F is locally compact, then X is dense in M’ of
A with respect to the Gelfand topology.

PROOF: F being locally compact, M’ is compact. Let X denote the
closure of X in /ff’. An application of Theorem 2.1 to the algebra Â =

= {: f E A, 1 = 1 },  is the Gelfand transform of f, completes the
proof.

Let P(X) denote a non-archimedean Stone-Cech compactification of
a zero-dimensional Hausdorff space (see [2], p.121). The following
easily proved lemma which is well known in the classical case does not
seem to have been stated explicitly in the literature.

LEMMA 2.3: Let (X) be a non-archimedean Stone-Cech compactifica-
tion of a zero-dimensional Hausdorff space X. Then we have

i) X is dense in (X);
ii) every F-valued bounded continuous function f on X has a unique

extension f * to a F-valued continuous function on (X);
iii) (X) is unique in the sense that f Y is another compact zero-

dimensional Hausdorff space possessing properties i) and ii) then Y and
(X) are homeomorphic.
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Corollary 2.2 and Lemma 2.3 yield

COROLLARY 2.4: If X is a zero-dimensional Hausdorff space and F is
locally compact, then the Gelfand ideal space M’ of C(X; F) is the non-
archimedean Stone-Cech compactification p(X) of X.

Note. Lip(X, d), lip(X, d) are inversely closed and separate points of X
strongly and so Theorem 3.7 of [4] is immediate from Corollary 2.2.
Incidentally Theorem 2.1 and Corollary 2.2 are improvements of

Theorems 3.5, 3.6 of [4] and serve as non-archimedean analogues (see
[8], p. 55).
We know that a family A of functions on a topological space X is a

regular family if A separate closed sets and points outside them.
Consider for any F-valued function f on X, the function f1 defined by

f1(x)={f(x)1 if |f(x)|~1.

The following theorem which is an improvement of Theorem 4.3 of
[4], gives a sufficient condition under which an algebra of F-valued
functions on a compact zero-dimensional Hausdorff space is regular.

THEOREM 2.5: Let X be a compact zero-dimensional Hausdorff space
and A an algebra with identity of continuous functions on X such that A
separate points of X strongly. If f, E A for each f E A, then A is a regular
family of functions on X.

PROOF: Let H c X be closed and xo E XBH. By the non-archimedean
Stone-Weierstrass theorem ([10], p. 161, Theorem 2) A is dense in

C(X; F). X being zero-dimensional there exists a clopen neighbourhood
U of xo such that U n H = 0 so that XXBU E C(X; F). By denseness of A,
we have f ~ A such that ~~XBU-f~~  1. Since fl E A, g = ( fl - 1)/
(fl(xo) - 1) is also in A and meets the requirements.

It is easily seen that fl E Lip(X, d) (lip(X, d), C(X; F)) for each

f~Lip(X,d) (lip(X, d), C(X ; F)). Consequently we have

COROLLARY 2.6: If F is locally compact, i) Lip(X, d), lip(X, d) for any
ultrametric space (X, d) and ii) C(X; F) for any zero-dimensional Haus-
dorff space are weakly regular Banach algebras.

Note. It is not known whether lip(X, d) is always regular or not in the
classical case, while in the non-archimedean case it is always weakly
regular if F is locally compact.
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Let A be a weakly regular strongly semi-simple (see [4], p. 18) non-
archimedean Banach algebra with identity. If K is any closed subset of
the Silov ideal J(K) associated to K is defined as the closure of the
set of all elements of A whose Gelfand transform vanish in a clopen
neighbourhood of K. Clearly J(K) is a closed ideal. For any ideal 1 of A,
let hG(I) be the collection of all Gelfand ideals containing I. If M(K)
= {x e A : x(K) = 01, where K is a closed subset of M’ then M(K) is the
largest closed ideal with hG(M(K)) = K. We observe that hG(J(K)) = K
and an element x E A is in J(K) if and only if there is a sequence {xn} in
A such that i) xn = x in a clopen neighbourhood of K and ii) Ilxnll ~ 0,
n - oo. We shall now prove that J(K) is the smallest closed ideal with
hG(J(K)) = K. We start with the following interesting lemma.

LEMMA 2.7: A and Â = {:x~A} are isomorphic algebras. If, further F
is locally compact and A is inversely closed, we have

i) all the maximal ideals of Â are of the form M~={~ Â: (~) =0},
~~M’ of A.

ii) if I and Î are the corresponding ideals of A and Â and hG(I) = K,
then h(I) = K, where h(I) is the collection of all maximal ideals containing
7.

iii) Â is a regular non-archimedean normed algebra so that the hull-
kernel and Gelfand topology are the same on M’ of Â.

PROOF: Obviously, the Gelfand transform gives an isomorphism of
the algebras A and Â. i) follows from Theorem 2.1. By i) h(I) c J/’. If M
is any maximal ideal of Â containing Î, since M = M,, for some ç E -4Y’,
all  ~ 1 vanish at ç. i.e. I ~ ~ so that ç E hG(I). i.e. h(I) c hG(I). Again let
qJ E hG(I), then !(qJ) = 0, f ~ I. i.e. I c M~ so that hG(I) c h(I), in other
words ii) is established. iii) is a consequence of weak regularity of A.
The following theorem which leads to the desired result regarding

J(K), can be proved using Lemma 2.7 on lines, similar to that of its
classical counter part (see [8], Lemma 25C, p. 84). We omit the proof.

THEOREM 2.8: Let F be locally compact and K,, K2 be two disjoint
closed subsets of J/’. If A is inversely closed, there exists x E A such that
x(K1) = 1 and x(K2) = 0. In fact, any closed ideal 1 of A with hG(I) = K2
contains such an x.

COROLLARY 2.9: If K is a closed subset of M’, then J(K) is the smallest
closed ideal such that hG(J(K)) = K, when F is locally compact.

PROOF: It suffices to prove that J(K) is the smallest. Let 1 be any
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other closed ideal such that hG(I) = K. If x be such that x vanish in a
clopen neighbourhood of K, then support C of x is compact and C n K
= 0. By Theorem 2.8, there exists e ~ I such that ê(C) = 1 and ê(K) = 0.
i.e. (ex - x) - 0. A being strongly semisimple ex = x, i.e. x ~ I. The

proof is complete.

REMARK 2.10: Corollary 2.9 is the non-archimedean version of Silov’s
theorem [13].

An ideal I of a non-archimedean Banach algebra is said to be G-

primary (G-primary at qJEA!’) if hG(I) is a singleton (if hG(I)= {~}). If
hG(l) = K, the G-primary component of 7 at 9 c- K, is defined as the

smallest closed G-primary ideal at 9 containing 1 and is denoted by

PG(I, (p). If I* = n PG(l, ~), then 1* is a closed ideal containing I and

hG(I*) = K.

DEFINITION 2.11: A non-archimedean weakly regular Banach algebra
A is said to have the G-ideal intersection property if I = I* for every
closed ideal I of A.

We give below some examples of non-archimedean Banach algebras
having G-ideal intersection property.

EXAMPLE 1: Let X be a compact zero-dimensional Hausdorff space
and F be locally compact. C(X; F) has the G-ideal intersection property
(see [10], p. 154, Theorem 3, p. 155, Theorem 4).

EXAMPLE 2: If p = {pk} be a bounded sequence of real numbers, then
co(p)={x={xk}:xk~F, |xk|pk~0, k~~} is a metric linear space,
where the metric is defined by the paranorm M = sup{|xo|, |xk|pk,
k ~ 1}. co(p) has G-ideal intersection property.

EXAMPLE 3: This is due to Schikhof and it has no classical analo-

gue (see [8], 37.3, p. 149). For further details see [11]. Let H be a lo-
cally compact, zero-dimensional Hausdorff topological group and

C~(H ~ F) be the collection of all ,u-integrable functions on H (,u is
the left (right) Haar integral). If f,g~C~(H~F), then f * g(x)
=~f(xy)g(y-1)d03BC(y) defines a convolution product on C~(H ~ F)
making it into a Banach algebra. This Banach algebra has G-ideal inter-
section property.
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§3. Ideals in lip(X, d), Lip(X, d)

We shall assume throughout this section that F is locally compact.
Suppose f~lip(X,d) is such that K = {x~X:f(x)~0} is non-empty,
then there exists (as can be easily seen) a sequence {fn} in lip(X, d) such
that a) h = f in a clopen neighbourhood of K and b) Ilfnll ~ 0, n - ~.
Consequently we have i) for any closed ideal I with hG(I) = K c X,
J(K) = I = M(K) and ii) if (X, d) is compact, every closed ideal of

lip(X, d) is of the form M(K) for a suitable subset K of (X, d). It may be
noted here that ii) is known in the classical case for lip(X, d) only when
lip(X,d) is regular (see [12], p. 251).

For any ideal I, 12 stands for {03A3ni=1 03B1ifigi:fi,gi~I, a i E F n~N}. 12
and so Pare ideals. For the study of the ideals J(K) in Lip(X, d) we
first observe that {f~Lip(X,d): i) f(x) = 0, x~K and ii) I f(x)
- f(y)l/d(x, y) ~ 0 as (x, y) - K x KI is a closed subset of Lip(X, d),
where K is a compact subset of (X, d). Using this observation we present
a simpler proof of the following theorem concerning J(K).

THEOREM 3.1: Let K be a compact subset of (X, d). Then f E Lip(X, d) is
in J(K) f and only f f satisfies

i) f(x) = 0, x~K;
ii) |f(x) - f(y)|/d(x, y) ~ 0 as (x, y) ~ K x K.

PROOF: If f E J(K), the observation implies that f satisfies both i) and
ii). Let now f ~ Lip(X, d) and satisfy i) and ii). For each positive integer n,
let Un be a clopen neighbourhood of K such that 1) |f(x)|  1/n, x E Un
and 2) |f(x)-f(y)|/d(x,y)  1/n, x, y E Un, x ~ y. By compactness of K,

m(n)
there exist spheres S1, ... , Sm(n) such that K c U Si c Un. Let fri = f.
m(n) m(n)

£ xs,. On U Si, clearly fri = f and ~f’n~~, ~f’n~d are both less than 1/n.
Now f’n can be extended to fn on the whole of X by Theorem 1.2 such
that ~fn~  1/n. The sequence {fn} satisfy i) and ii) stated in the para-
graph preceeding Lemma 2.7. The proof is complete.

The following result is important for the study of G-primary ideals.

THEOREM 3.2: If characteristic of F e 2, then for each compact subset
K of (X, d), J(K) = M(K)2.

PROOF: That M(K)2 c J(K) can be proved as in the classical case
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[12]. For the reverse inclusion, let f~J(K) be such that f ~ 0 in a
clopen neighbourhood U of K. K being compact, there exists

g E Lip(X,d) such that g = 0 on K and g = 1 on XB U. Clearly g E M(K)
and so g2 E M(K)2. Further g2 = 1 on XBU. Therefore fg2 = f. As
M(K)2 is an ideal it follows that f = fg2 E M(K)2. i.e. J(K) c M(K)2.

Consequently we have i) the closed primary ideals of Lip(X, d) at
x ~ X are precisely the closed linear subspaces between J(x) and M(x);
ii) if K is a closed subset of a compact ultrametric space then

J(K) = n J(x) and iii) if (X, d) is a compact ultrametric space and 7 is
xeK

any ideal of Lip(X, d) such that hG(I ) is a clopen subset of (X, d), then 7 is
the intersection of G-primary ideals at x ~ K.

REMARK 3.3: From the results mentioned in the first paragraph of this
section, it follows that if (X, d) is compact, lip(X, d) has G-ideal inter-
section property. It has been proved in the classical case by Lucien
Waelbroeck [17], that when (X, d) is compact Lip(X, d) has ideal inter-
section property. The analogous result for the non-archimedean case is
not known.

REFERENCES

[1] G. BACHMAN, E. BECKENSTEIN, L. NARICI and SETH WARNER, Rings of continuous
functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-
112.

[2] E. BECKENSTEIN, G. BACHMAN and L. NARICI, Topological algebras of continuous
functions over valued fields, Studia Math. XLVIII (1973), 119-127.

[3] E. BECKENSTEIN, G. BACHMAN and L. NARICI, Function algebras over valued fields
with measures IV, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 53 (5) (1972),
349-358.

[4] R. BHASKARAN and U. NAIK-NIMBALKAR, Banach algebras of Lipschitz functions
over valued fields, Indag. Math. 40 (1978), 15-26.

[5] L. GRUSON and M. VAN DER PUT, Banach spaces, Bull. Soc. Math. France, Memoire
39-40 (1974), 55-100.

[6] A.W. INGLETON, The Hahn-Banach theorem for non-archimedean valued fields,
Proc. Cambridge Phil. Soc. 48 (1952), 41-45.

[7] T.M. JENKINS, Banach spaces of Lipschitz functions on an abstract metric space,
Thesis, Yale University, 1967.

[8] L.H. LOOMIS, An Introduction to Abstract Harmonic Analysis, van Nostrand, 1953.
[9] A.F. MONNA, Analyse non-archimedienne, Springer-Verlag, 1970.

[10] L. NARICI, E. BECKENSTEIN and G. BACHMAN, Functional Analysis and Valuation
Theory, Marcel Dekker, 1971.

[11] W.H. SCHIKHOF, Non-archimedean Harmonic analysis, Thesis, Nijmegen, 1967.
[12] D.R. SHERBERT, The structure of ideals and point derivations in Banach algebras of

Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
[13] G. SILOV, Homogeneous rings of functions, Amer. Math. Soc. Transl. No. 92, 1953,

Reprint Amer. Math. Soc. Transl. (1) (1962), 392-455.



34

[14] G.F. SIMMONS, Introduction to topology and modern Analysis, McGraw Hill, 1963.
[15] A.C.M. VAN ROOIJ, Non-archimedean Functional Analysis, Lecture Notes, Catholic

University, Nijmegen, 1976.
[16] A.C.M. VAN ROOIJ, Non-archimedean Functional Analysis, Marcel Dekker, 1978.
[17] L. WAELBROECK, Closed ideals of Lipschitz functions, Proceedings of the Internat-

ional Symposium on Function algebras, Tulane University, 1965, 322-325.

(Oblatum 19-III-1980 &#x26; 1-VII-1981)

R. Bhaskaran,
Ramanujan Institute,
University of Madras,
Chepauk, Madras 600 005
India

Presently at

School of Mathematics,
Madurai Kamaraj University,
Madurai 625 021 
India


