@article{CM_1982__45_3_293_0, author = {Usui, Sampei}, title = {Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism}, journal = {Compositio Mathematica}, pages = {293--314}, publisher = {Martinus Nijhoff Publishers}, volume = {45}, number = {3}, year = {1982}, mrnumber = {656607}, zbl = {0507.14028}, language = {en}, url = {http://www.numdam.org/item/CM_1982__45_3_293_0/} }
TY - JOUR AU - Usui, Sampei TI - Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism JO - Compositio Mathematica PY - 1982 SP - 293 EP - 314 VL - 45 IS - 3 PB - Martinus Nijhoff Publishers UR - http://www.numdam.org/item/CM_1982__45_3_293_0/ LA - en ID - CM_1982__45_3_293_0 ER -
%0 Journal Article %A Usui, Sampei %T Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism %J Compositio Mathematica %D 1982 %P 293-314 %V 45 %N 3 %I Martinus Nijhoff Publishers %U http://www.numdam.org/item/CM_1982__45_3_293_0/ %G en %F CM_1982__45_3_293_0
Usui, Sampei. Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism. Compositio Mathematica, Tome 45 (1982) no. 3, pp. 293-314. http://www.numdam.org/item/CM_1982__45_3_293_0/
[1] On the Torelli problems for Kählerian K-3 surfaces. Ann, scient. Éc. Norm. Sup. 4e sér. 8-2 (1975) 235-274. | Numdam | MR | Zbl
and :[2] Surfaces with K2 = pg = 1 and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lecture Notes in Math. No 732, Springer Verlag, 1-29. | Zbl
:[3] Supplement to "On the inverse of Monoidal Transformation", Publ. R.I.M.S. Kyoto Univ. 7 (1972) 637-644. | MR | Zbl
and ;[4] Global moduli for surfaces of general type. Invent. Math. 43 (1977) 233-282. | MR | Zbl
:[5] Periods of integrals on algebraic manifolds I, II, III: Amer. J. Math. 90 (1968) 568-626; 805-865; Publ. Math. I.H.E.S. 38 (1970) 125-180. | Numdam | Zbl
:[6] A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). Cont. Ren. Acad. Bulgare des Sci. 30-3 (1977) 323-325. | MR | Zbl
:[7] Torelli theorems for Kähler K3 surfaces, Comp. Math. 42-2 (1981) 145-186. | Numdam | MR | Zbl
and :[8] A Torelli theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk. 35 (1971) 530-572. | MR
and :[9] Surfaces of general type with pg = 1 and (K, K) = 1. I, Ann. scient. Éc. Norm. Sup. 4e sér. 13-1 (1980) 1-21. | Numdam | Zbl
:[10] Period map of surfaces with pg = c21= 1 and K ample. Mem. Fac. Sci. Kochi Univ. (Math.) 2 (1981) 37-73. | MR | Zbl
:[11] Effect of automorphisms on variation of Hodge structure. J. Math. Kyoto Univ. 21-4 (1981). | MR | Zbl
:[12] The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem, Comp. Math. 41-3 (1980) 401-414. | Numdam | MR | Zbl
: