@article{CM_1980__41_3_401_0, author = {Catanese, F.}, title = {The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global {Torelli} problem}, journal = {Compositio Mathematica}, pages = {401--414}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {41}, number = {3}, year = {1980}, mrnumber = {589089}, zbl = {0444.14008}, language = {en}, url = {http://www.numdam.org/item/CM_1980__41_3_401_0/} }
TY - JOUR AU - Catanese, F. TI - The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem JO - Compositio Mathematica PY - 1980 SP - 401 EP - 414 VL - 41 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1980__41_3_401_0/ LA - en ID - CM_1980__41_3_401_0 ER -
%0 Journal Article %A Catanese, F. %T The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem %J Compositio Mathematica %D 1980 %P 401-414 %V 41 %N 3 %I Sijthoff et Noordhoff International Publishers %U http://www.numdam.org/item/CM_1980__41_3_401_0/ %G en %F CM_1980__41_3_401_0
Catanese, F. The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem. Compositio Mathematica, Tome 41 (1980) no. 3, pp. 401-414. http://www.numdam.org/item/CM_1980__41_3_401_0/
[1] On a theorem of Torelli. Am. J. of Math., 80 (1958) 801-828. | MR | Zbl
:[2] Canonical models of surfaces of general type. Publ. Math. I.H.E.S. 42 (1973) 171-219. | Numdam | MR | Zbl
:[3] Surfaces with K2 = pg = 1 and their period mapping, in Algebraic Geometry, Proc. Copenhagen 1978, Springer Lect. Notes in Math. n.732 (1979) 1-26. | MR | Zbl
:[4] Weighted projective varieties, (to appear). | MR
:[5] Le superficie algebriche di genere lineare p(1) = 2. Rend. Acc. Lincei, s. 5a, vol. VI (1897) 139-144. | JFM
:[6] Le superficie algebriche. Zanichelli, Bologna, (1949). | MR | Zbl
:[7] Global moduli for surfaces of general type. Inv. Math. 43 (1977) 233-282. | MR | Zbl
:[8] Periods of integrals on algebraic manifolds, I, II. Am. J. of Math. 90 (1968) 568-626, 805-865. | Zbl
:[9] Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, Bull. Am. Math. Soc. 76 (1970) 228-296. | MR | Zbl
:[10] Recent developments in Hodge theory: a discussion of techniques and results. Proc. Int. Coll. Bombay, (1973), Oxford Univ. Press. | MR | Zbl
and :[11] On the periods of Enriques surfaces, I, II. Math. Ann. vol. 234, 235 (1978) 73-88, 217-246. | MR | Zbl
:[12] Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Japan 20 (1968) 170-192. | MR | Zbl
:[13] New proof for the existence of locally complete families of complex structures. Proc. Conf. Compl. Analysis, Minneapolis, pp. 142-154, Springer (1965). | MR | Zbl
:[14] An example of a simply connected surface of general type for which the local Torelli theorem does not hold. C.R. Ac. Bulg. Sc. 30, n.3 (1977) 323-325. | MR | Zbl
:[15] On a generalization of complete intersections. J. Math. Kyoto Univ. 15, n.3 (1975) 619-646. | MR | Zbl
:[16] The canonical ring of an algebraic surface. Annals of Math. 76 (1962) 612-615.
:[17] The local Torelli theorem, a review of known results in Variètès analytiques compactes, Nice 1977. Springer Lect. Notes in Math. 683 (1978) 62-73. | MR | Zbl
:[18] Theorem of Torelli on algebraic surfaces of type K3, Math. USSR Izvestija 5 (1971) 547-588. | Zbl
and :[19] Resolution of singularities of flat deformations of rational double points. Funk. Anal. i Pril. 4, n.1, pp. 77-83. | MR | Zbl
:[20] Local Torelli theorem for some non-singular weighted complete intersections. Proceed. Internat. Symposium Algebraic Geometry, Kyoto, 1977. Ed. M. Nagata. Kinokuniya Book-Store, Tokyo, Japan, 1978: pp. 723-734. | MR | Zbl
:[21] Obstructions to the existence of a space of moduli, Global Analysis. Prin. Math. Series n.29 (1969) 403-414. | MR | Zbl
:[22] Zum Beweis des Torellischen Satz. Göttingen Nachrichten (1957) 33-53. | MR | Zbl
: