A geometric characterization of the Radon-Nikodym property in Banach spaces
Compositio Mathematica, Tome 36 (1978) no. 1, pp. 3-6.
@article{CM_1978__36_1_3_0,
     author = {Bourgain, J.},
     title = {A geometric characterization of the {Radon-Nikodym} property in {Banach} spaces},
     journal = {Compositio Mathematica},
     pages = {3--6},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {36},
     number = {1},
     year = {1978},
     mrnumber = {515034},
     zbl = {0378.46017},
     language = {en},
     url = {http://www.numdam.org/item/CM_1978__36_1_3_0/}
}
TY  - JOUR
AU  - Bourgain, J.
TI  - A geometric characterization of the Radon-Nikodym property in Banach spaces
JO  - Compositio Mathematica
PY  - 1978
SP  - 3
EP  - 6
VL  - 36
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1978__36_1_3_0/
LA  - en
ID  - CM_1978__36_1_3_0
ER  - 
%0 Journal Article
%A Bourgain, J.
%T A geometric characterization of the Radon-Nikodym property in Banach spaces
%J Compositio Mathematica
%D 1978
%P 3-6
%V 36
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1978__36_1_3_0/
%G en
%F CM_1978__36_1_3_0
Bourgain, J. A geometric characterization of the Radon-Nikodym property in Banach spaces. Compositio Mathematica, Tome 36 (1978) no. 1, pp. 3-6. http://www.numdam.org/item/CM_1978__36_1_3_0/

[1] E. Bishop and R.R. Phelps: The support functionals of a convex set. Proc. Symp. in Pure Math. Vol. 7 (Convexity). A.M.S. (1963) 27-35. | MR | Zbl

[2] J. Bourgain: On dentability and the Bishop-Phelps property (to appear). | MR | Zbl

[3] R.E. Huff and P.D. Morris: Geometric characterizations of the Radon-Nikodym property in Banach spaces (to appear). | MR | Zbl

[4] H. Maynard: A geometric characterization of Banach spaces possessing the Radon-Nikodym property. Trans. A.M.S. 185 (1973) 493-500. | MR | Zbl

[5] R.R. Phelps: Dentability and extreme points in Banach spaces, Journal of Functional Analysis, 16 (1974) 78-90. | MR | Zbl