COMPOSITIO MATHEMATICA

J. BOURGAIN

A geometric characterization of the Radon-Nikodym property in Banach spaces

Compositio Mathematica, tome 36, nº 1 (1978), p. 3-6 <http://www.numdam.org/item?id=CM_1978__36_1_3_0>

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 36, Fasc. 1, 1978, pag. 3–6 Noordhoff International Publishing Printed in the Netherlands

A GEOMETRIC CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY IN BANACH SPACES

J. Bourgain*

Abstract

It is shown that a Banach space E has the Radon-Nikodym property (R.N.P.) if and only if every nonempty weakly-closed bounded subset of E has an extreme point.

Notations

E, || || is a real Banach space with dual *E'*. For sets $A \subset E$, let c(A) and $\bar{c}(A)$ denote the convex hull and closed convex hull, respectively. If $x \in E$ and $\epsilon > 0$, then $B(x, \epsilon) = \{y \in E; ||x - y|| < \epsilon\}$. A subset *A* of *E* is said to be dentable if for every $\epsilon > 0$ there exists a point $x \in A$ such that $x \notin \bar{c}(A \setminus B(x, \epsilon))$.

Suppose that C is a nonempty, bounded, closed and convex subset of E. Let $M(C) = \sup\{||x||; x \in C\}$. If $f \in E'$, let $M(f, C) = \sup\{f(x); x \in C\}$, and for each $\alpha > 0$, let $S(f, \alpha, C) = \{x \in C; f(x) \ge M(f, C) - \alpha\}$. Such a set is called a slice of C.

LEMMA 1: Let C and C_1 be nonempty, bounded, closed and convex subsets of E, such that $C_1 \subset C$ and $C_1 \neq C$. Then there exist $x \in C$, $f \in E'$ and $\alpha > 0$ with $f(x) = M(f, C) > M(f, C_1) + \alpha$.

PROOF: Without restriction, we can assume $M(C) \le 1$. Take $x_1 \in C \setminus C_1$. By the separation theorem we have $f_1 \in E'$ and $\alpha_1 > 0$ with $f_1(x_1) > M(f_1, C_1) + \alpha_1$.

Let $\alpha = \alpha_1/3$. Using a result of Bishop and Phelps (see [1]), we

^{*}Navorsingsstagiair, N.F.W.O., Belgium, Vrije Universiteit Brussel.

J. Bourgain

obtain $x \in C$ and $f \in E'$ such that f(x) = M(f, C) and $||f - f_1|| < \alpha$. Therefore $f(x) \ge f(x_1) > f_1(x_1) - \alpha > M(f_1, C_1) + 2\alpha > M(f, C_1) + \alpha$.

LEMMA 2: Let C be a nonempty, bounded, closed and convex subset of E. If for every $\epsilon > 0$, there exist convex and closed subsets C_1 and C_2 of C, such that $C = \overline{c}(C_1 \cup C_2), C_1 \neq C$ and diam $C_2 \leq \epsilon$, then C is dentable.

PROOF: Take $\epsilon > 0$ and let C_1, C_2 be convex and closed subsets of C, such that $C = \overline{c}(C_1 \cup C_2), C_1 \neq C$ and diam $C_2 \leq \epsilon/2$. By Lemma 1, there exist $x \in C$, $f \in E'$ and $\alpha > 0$ with $f(x) = M(f, C) > M(f, C_1) + \alpha$. Let d = diam C and consider the set

$$Q = \left\{ \lambda y_1 + (1 - \lambda) y_2; y_1 \in C_1, y_2 \in C_2 \text{ and } \lambda \in \left[\frac{\epsilon}{12d}, 1\right] \right\}.$$

It follows immediately that \overline{Q} is a closed, convex subset of C and $x \notin \overline{Q}$. Suppose $z_1, z_2 \in C \setminus \overline{Q}$. We find z'_1, z'_2 such that $z'_i \in c(C_1 \cup C_2)$, $z'_i \notin Q$ and $||z_i - z'_i|| < \epsilon/6$ (i = 1, 2). There exist $y'_1 \in C_1$, $y'_2 \in C_2$ and $\lambda_i \in [0, \epsilon/12d]$, with $z'_i = \lambda_i y'_1 + (1 - \lambda_i) y'_2$ (i = 1, 2). We obtain:

$$||z_1 - z_2|| < ||z_1' - z_2'|| + \frac{\epsilon}{3} \le ||y_2^1 - y_2^2|| + \lambda_1 ||y_1' - y_2'|| + \lambda_2 ||y_1^2 - y_2^2|| + \frac{\epsilon}{3} \le \epsilon.$$

This implies that $C \setminus \overline{Q} \subset B(x, \epsilon)$ and therefore $\overline{c}(C \setminus B(x, \epsilon)) \subset \overline{Q}$. Because $x \notin \overline{Q}$, we have that $x \notin \overline{c}(C \setminus B(x, \epsilon))$, which proves the lemma.

THEOREM 3: If the Banach space E hasn't the RNP, there exists a nonempty, bounded and weakly-closed subset of E without extreme points.

PROOF: If E hasn't the RNP, there is a closed and separable subspace of E, which hasn't the RNP (see [4]). Therefore we can assume E separable.

Let C be a non-dentable, convex, closed and bounded subset of E. By Lemma 2, there exists $\epsilon > 0$, such that if $C = \overline{c}(C_1 \cup C_2)$, where C_1, C_2 are closed, convex and diam $C_2 \leq \epsilon$, then $C = C_1$. Suppose $C = \bigcup_{p \in \mathbb{N}^*} B_p$, where B_p is the intersection of C and a closed ball with radius $\epsilon/2$. By induction on $p \in \mathbb{N}^*$, we construct sequences $(N_p)_p$, $(V_p)_p$ and $(\alpha_p)_p$, where N_p is a finite subset of \mathbb{N}^p , $V_p =$ $\{(x_{\omega}, \lambda_{\omega}, f_{\omega}); \omega \in N_p\}$ a subset of $C \times [0, 1] \times E'$ and $\alpha_p > 0$, with the following properties: (1) N_p is the projection of N_{p+1} on the p first co-ordinates $(p \in \mathbb{N}^*)$.

5

- (2) $\sum_{(\omega,i)\in N_{p+1}}\lambda_{(\omega,i)}=1 \ (p\in\mathbb{N}^*, \omega\in N_p).$
- (3) $||x_{\omega} \sum_{(\omega,i) \in N_{p+1}} \lambda_{(\omega,i)} x_{(\omega,i)}|| < (1/2^{p+1}) \ (p \in \mathbb{N}^*, \, \omega \in N_p).$
- (4) $f_{\omega}(x_{\omega}) = M(f_{\omega}, C) \ (p \in \mathbb{N}^*, \omega \in N_p).$
- (5) $S(f_{(\omega,i)}, \alpha_{p+1}, C) \subset S(f_{\omega}, \alpha_p, C) \ (p \in \mathbb{N}^*, (\omega, i) \in N_{p+1}).$
- (6) $S(f_{\omega}, \alpha_p, C) \cap B_p = \emptyset \ (p \in \mathbb{N}^*, \omega \in N_p).$
- (In (2) and (3), i is the summation index).

CONSTRUCTION:

(1) Take $N_1 = \{1\}$ and $\lambda_1 = 1$. Applying Lemma 1, we find $x_1 \in C$, $f_1 \in E'$ and $\alpha_1 > 0$ such that $f_1(x_1) = M(f_1, C)$ and $S(f_1, \alpha_1, C) \cap B_1 = \emptyset$.

- (2) Suppose we found N_p , V_p and α_p .
 - Take $\omega \in N_p$. Let $S = \{x \in C; \exists f \in E' \text{ such that } f(x) = M(f, C)$ $> \sup f((C \setminus S(f_{\omega}, \alpha_p, C)) \cup B_{p+1})\}$

By lemma 1, we obtain easily

$$C = \bar{c}((C \setminus S(f_{\omega}, \alpha_p, C)) \cup B_{p+1} \cup S).$$

Because diam $B_{p+1} \leq \epsilon$, this implies

$$x_{\omega} \in C = \bar{c}((C \setminus S(f_{\omega}, \alpha_p, C)) \cup S)$$

Thus there are sequences $(a_m)_m$ in $C \setminus S(f_\omega, \alpha_p, C)$, $(b_m)_m$ in c(S) and $(t_m)_m$ in [0, 1], with $x_\omega = \lim_{m \to \infty} (t_m a_m + (1 - t_m) b_m)$.

Because $f_{\omega}(t_m a_m + (1 - t_m)b_m) \le M(f_{\omega}, C) - t_m \alpha_p$, it follows that $\lim_{m \to \infty} t_m = 0$ and thus $x_{\omega} = \lim_{m \to \infty} b_m \in \overline{c}(S)$.

Take $m_{\omega} \in \mathbb{N}^*$, $x_{(\omega,i)} \in S$, $\lambda_{(\omega,i)} \in [0,1]$, $f_{(\omega,i)} \in E'$ $(1 \le i \le m_{\omega})$ and $\beta_{\omega} > 0$, such that:

(1) $\sum_{i=1}^{m_{\omega}} \lambda_{(\omega,i)} = 1.$ (2) $\|x_{\omega} - \sum_{i=1}^{m_{\omega}} \lambda_{(\omega,i)} x_{(\omega,i)}\| < (1/2^{p+1}).$ (3) $f_{(\omega,i)}(x_{(\omega,i)}) = M(f_{(\omega,i)}, C) \ (1 \le i \le m_{\omega}).$ (4) $S(f_{(\omega,i)}, \beta_{\omega}, C) \subset S(f_{\omega}, \alpha_{p}, C) \ (1 \le i \le m).$ (5) $S(f_{(\omega,i)}, \beta_{\omega}, C) \cap B_{p+1} = \emptyset \ (1 \le i \le m_{\omega}).$ Finally, let $N_{p+1} = \{(\omega, i); \omega \in N_{p} \text{ and } 1 \le i \le m_{\omega}\}$

$$V_{p+1} = \{(x_{(\omega,i)}, \lambda_{(\omega,i)}, f_{(\omega,i)}; (\omega, i) \in N_{p+1}\}$$
$$\alpha_{p+1} = \min\{\beta_{\omega}; \omega \in N_p\}.$$

We verify that this completes the construction. Now, for every $p \in \mathbb{N}^*$ and $\omega \in N_p$, we define

$$\mathbf{y}_{\boldsymbol{\omega}} = \lim_{\boldsymbol{\nu} \to \infty} \sum \lambda_{(\boldsymbol{\omega}, i_1)} \dots \lambda_{(\boldsymbol{\omega}, i_1, \dots, i_{\boldsymbol{\nu}})} \mathbf{X}_{(\boldsymbol{\omega}, i_1, \dots, i_{\boldsymbol{\nu}})},$$

where for each $\nu \in \mathbb{N}^*$ the summation happens over all integers i_1, \ldots, i_{ν} satisfying $(\omega, i_1, \ldots, i_{\nu}) \in N_{p+\nu}$. It is clear that these limits exist. Furthermore, we have for each $p \in \mathbb{N}^*$ and $\omega \in N_p$:

- (1) $y_{\omega} = \sum_{(\omega,i) \in N_{p+1}} \lambda_{(\omega,i)} y_{(\omega,i)}$.
- (2) $y_{\omega} \in S(f_{\omega}, \alpha_p, C).$

(In (1) is i the summation index).

We will show that $R = \{y_{\omega}; p \in \mathbb{N}^* \text{ and } \omega \in N_p\}$ is the required set. If $z \in C$, there exists $n \in \mathbb{N}^*$ such that $z \in B_n$. By construction $U = \bigcap_{\omega \in N_n} (E \setminus S(f_{\omega}, \alpha_n, C))$ is a weak neighborhood of z and $U \cap R$ is finite. Hence R is weakly closed and we also remark that R is discreet in its weak topology. It remains to show that R hasn't extreme points. Take $p \in \mathbb{N}^*$ and $\omega \in N_p$.

Then there is some $n \in \mathbb{N}^*$ with $y_{\omega} \in B_n$. Clearly, n > p. Since $y_{\omega} \in c(\bigcup_{\Omega \in N_n} (S(f_{\Omega}, \alpha_n, C) \cap R))$, and for each $\Omega \in N_n$ we have $S(f_{\Omega}, \alpha_n, C) \cap B_n = \emptyset$, y_{ω} is not an extreme point of R.

This completes the proof of the theorem.

COROLLARY 4: A Banach space E has the RNP if and only if every bounded, closed and convex subset C of E contains an extreme point of its weak*-closure \tilde{C} in E".

PROOF: The necessity is a consequence of the work of Phelps (see [5]).

If now E does not possess the RNP, there exists a bounded, weakly closed subset R of E without extreme points. Clearly $C = \bar{c}(R)$ does not contain an extreme point of its weak*-closure.

REFERENCES

- E. BISHOP and R.R. PHELPS: The support functionals of a convex set. Proc. Symp. in Pure Math. Vol. 7 (Convexity). A.M.S. (1963) 27-35.
- [2] J. BOURGAIN: On dentability and the Bishop-Phelps property (to appear).
- [3] R.E. HUFF and P.D. MORRIS: Geometric characterizations of the Radon-Nikodym property in Banach spaces (to appear).
- [4] H. MAYNARD: A geometric characterization of Banach spaces possessing the Radon-Nikodym property. Trans. A.M.S. 185 (1973) 493-500.
- [5] R.R. PHELPS: Dentability and extreme points in Banach spaces, Journal of Functional Analysis, 16 (1974) 78-90.

(Oblatum 6-V-1976)

Department Wiskunde Vrije Universiteit Brussel Pleinlaan 2, F7 1050 Brussel (Belgium)