Continuity of local times for Markov processes
Compositio Mathematica, Tome 24 (1972) no. 3, pp. 277-303.
@article{CM_1972__24_3_277_0,
     author = {Getoor, R. K. and Kesten, H.},
     title = {Continuity of local times for {Markov} processes},
     journal = {Compositio Mathematica},
     pages = {277--303},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {24},
     number = {3},
     year = {1972},
     mrnumber = {310977},
     zbl = {0293.60069},
     language = {en},
     url = {http://www.numdam.org/item/CM_1972__24_3_277_0/}
}
TY  - JOUR
AU  - Getoor, R. K.
AU  - Kesten, H.
TI  - Continuity of local times for Markov processes
JO  - Compositio Mathematica
PY  - 1972
SP  - 277
EP  - 303
VL  - 24
IS  - 3
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1972__24_3_277_0/
LA  - en
ID  - CM_1972__24_3_277_0
ER  - 
%0 Journal Article
%A Getoor, R. K.
%A Kesten, H.
%T Continuity of local times for Markov processes
%J Compositio Mathematica
%D 1972
%P 277-303
%V 24
%N 3
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1972__24_3_277_0/
%G en
%F CM_1972__24_3_277_0
Getoor, R. K.; Kesten, H. Continuity of local times for Markov processes. Compositio Mathematica, Tome 24 (1972) no. 3, pp. 277-303. http://www.numdam.org/item/CM_1972__24_3_277_0/

S.M. Berman [1] Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Stat. 41 (1970) 1260-1272. | MR | Zbl

R.M. Blumenthal And R.K. Getoor [2] Local times for Markov processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 3 (1964) 50-74. | MR | Zbl

R.M. Blumenthal And R.K. Getoor [3] Markov processes and potential theory, Academic Press, New York, 1968. | MR | Zbl

E.S. Boylan [4] Local times for a class of Markov processes, Ill. J. Math. 8 (1964) 19-39. | MR | Zbl

L. Breiman [5] Probability, Addison-Wesley Publ. Co., Reading, Mass., 1968. | MR | Zbl

J. Bretagnolle [6 ] Résultats de Kesten sur les processus à accroissements indépendants. Lecture Notes in Mathematics, Vol. 191, Springer-Verlag, Berlin (1971) 21-36. | Numdam | MR

K.L. Chung [7] A course in probability theory, Harcourt, Brace & World, Inc. New York, 1968. | MR | Zbl

L.E. Dubins And D.A. Freedman [8] A sharper form of the Borel-Cantelli lemma and the strong law, Ann. Math. Stat. 36 (1965) 800-807. | MR | Zbl

A.M. Garsia, E. Rodemich AND H. Rumsey, Jr. [9] A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math J. 20 (1970) 565-578. | MR | Zbl

A.M. Garsia [10] Continuity properties of multi-dimensional Gaussian processes, 6th Berkeley Symposium on Math. Stat. and Prob., p. 000, Berkeley 1970. | Zbl

R.K. Getoor [11] Continuous additive functionals of a Markov process with applications to processes with independent increments, J. Math. Anal. Appl. 13 (1966) 132-153. | MR | Zbl

K. Ito And H.P. Mckean, Jr. [12] Diffusion processes and their sample paths, Springer-Verlag, Berlin, 1965. | Zbl

H. Kesten [13] Hitting probabilities of single points for processes with stationary independent increments, Memoir 93, Am. Math. Soc., 1969. | MR | Zbl

P.A. Meyer [14] Sur les lois de certaines functionelles additives; Applications aux temps locaux, Publ. Inst. Stat. Univ. Paris 15 (1966) 295-310. | MR | Zbl

P.A. Meyer [15] Processus de Markov, Lecture Notes in Mathematics, vol. 26, Springer-Verlag, Berlin, 1967. | MR | Zbl

S.C. Port And C.J. Stone [16] The asymmetric Cauchy processes on the line, Ann. Math. Stat. 40 (1969) 137-143. | MR | Zbl

S.C. Port And C.J. Stone [17] Infinitely divisible processes and their potential theory, Ann. Inst. Fourier 21 (1971) 157-257. | Numdam | MR | Zbl

C. Stone [18] The set of zeros of a semistable process, Ill. J. Math. 7 (1963) 631-637. | MR | Zbl

H.F. Trotter [19] A property of Brownian motion paths, Ill. J. Math. 2 (1958) 425-433. | MR | Zbl