Choice sequences and Markov's principle
Compositio Mathematica, Tome 24 (1972) no. 1, pp. 33-53.
@article{CM_1972__24_1_33_0,
     author = {Vesley, R. E.},
     title = {Choice sequences and {Markov's} principle},
     journal = {Compositio Mathematica},
     pages = {33--53},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {24},
     number = {1},
     year = {1972},
     mrnumber = {313023},
     zbl = {0237.02005},
     language = {en},
     url = {http://www.numdam.org/item/CM_1972__24_1_33_0/}
}
TY  - JOUR
AU  - Vesley, R. E.
TI  - Choice sequences and Markov's principle
JO  - Compositio Mathematica
PY  - 1972
SP  - 33
EP  - 53
VL  - 24
IS  - 1
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1972__24_1_33_0/
LA  - en
ID  - CM_1972__24_1_33_0
ER  - 
%0 Journal Article
%A Vesley, R. E.
%T Choice sequences and Markov's principle
%J Compositio Mathematica
%D 1972
%P 33-53
%V 24
%N 1
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1972__24_1_33_0/
%G en
%F CM_1972__24_1_33_0
Vesley, R. E. Choice sequences and Markov's principle. Compositio Mathematica, Tome 24 (1972) no. 1, pp. 33-53. http://www.numdam.org/item/CM_1972__24_1_33_0/

Errett Bishop [1] Mathematics as a numerical language, Intuitionism and Proof Theory, edited by John Myhill, A. Kino and R. E. Vesley, North-Holland, Amsterdam, (1970), 53-71. | MR | Zbl

Kurt Gödel [2] Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12 (1958), 280-287. | MR | Zbl

S.C. Kleene [3] Classical extensions of intuitionistic mathematics, Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, edited by Y. Bar-Hillel, North-Holland, Amsterdam, (1965), 31-44. | MR | Zbl

S.C. Kleene [4] Countable functionals, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam, (1959), 81-100. | MR | Zbl

S.C. Kleene [5] Introduction to Metamathematics, Van Nostrand, New York, 1952. | MR | Zbl

S.C. Kleene And R.E. Vesley [6] The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam, 1965. | MR | Zbl

G. Kreisel [7] Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam (1959), 101-128. | MR | Zbl

G. Kreisel [8] On weak completeness of intuitionistic predicate logic, Journal of Symbolic Logic, vol. 27 (1962), 139-158. | MR | Zbl

John Myhill [9] Lecture notes for a seminar in logic, S.U.N.Y. at Buffalo, Spring 1969, and University of Michigan, Fall 1969.

M. Yasugi [10] Intuitionistic analysis and Gödel's interpretation, Journal of the Mathematical Society of Japan, vol. 15 (1963), 101-112. | MR | Zbl