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CHOICE SEQUENCES AND MARKOV’S PRINCIPLE !

by

R. E. Vesley

1. Introduction

Bishop has proposed in [1] to avoid some difficulties in the interpreta-
tion of intuitionistic implication by adopting instead for his constructive
mathematics an interpretation of implication suggested by Godel’s [2].

If quantifiers of all appropriate types and corresponding intuitionistic
rules are added to Gédel’s theory T of functionals of finite type, three
additional principles can be seen to be necessary and sufficient to allow
a proof that any formula is equivalent to its normal form for the func-
tional interpretation 3¢°Vy'4 (A logic free). The first of these is the
axiom of choice:

*AC: VxIyA(x,y) o JaVxA(x, a(x)),

for x, y variables of any type and o of the appropriate type. The others,
presumably non-intuitionistic, are

*M: Vx(A(x)v14(x)) &1VxA(x) o Ix14(x)

(which for x a number variable is just what is usually called Markov’s
principle), and

*C: Vx(A(x)v4(x)) & (VxA(x) 2 Iy B(p)) = Iy(Vx A(x) = B(y)),

each to be available for variables of any type. Cf. Yasugi [10].

A detailed investigation cf theories extending T to formalize Bishop’s
mathematics has been carried out by Myhill, who calls the system finally
proposed in [9] DQ™.

Viewed formally, Bishop’s proposal appears to call for the adoption
of a new concept of constructive implication for which *M and *C are
valid. (Of course Bishop, like Brouwer, seems to wish to avoid commit-
ment to any specific set of postulates for his logic.)

We shall explore the consequences of adopting this new constructive

1 Preparation of this paper was assisted by a grant from the U.S. National Science
Foundation, GP 13019. We should like to thank for their helpful remarks Joan R.
Moschovakis and A. S. Troelstra.
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34 R. E. Vesley [2]

logic (for two types only) for a theory of free choice sequences. Specific-
ally, to Kleene’s formal system I of intuitionistic analysis ([6], hereafter
cited as FIM, and which should be consulted for all otherwise unexplained
notations or concepts), we shall add (in effect) as axioms *M (which is
then Markov’s principle for choice sequences) and a (probably) strength-
ened *C, to obtain a new system I*. We shall show that I* satisfies
(Theorem 1) a realizability property, and (Theorem 2) a normal form
property for formulas like that obtained in the functional interpretation
(but now staying in only two types).

The realizability result is established intuitionistically except for use of
*M; so in this sense, the extended *C is justified from *M.

The theory I * cannot claim to be intuitionistic, by reason of Brouwer’s
explicit denial of Markov’s principle for choice sequences. But to refute
it the intuitionist, if he follows Brouwer, must use that strongest weapon
(Kripke’s schema) of whose other proper uses he seems unsure. So the
margin of difference is not yet clear.

On the other hand, I* is the only known extension of intuitionistic
analysis with a normal form property for formulas, no parallel to which
exists in present intuitionistic theories. (There is of course no prenex
normal form theorem for intuitionistic predicate logic.)

2. Representing higher types in 1

In I we cannot deal directly with objects of higher type. Instead we
consider species C" of one-place number-theoretic functions, where each
C" or h corresponds to a level in the finite type structure for the one-place
functionals. We call the indices # C-indices and define the species of such
C-indices inductively as follows.

DEFINITION 1.

1. O is a C-index.

2. If i and j are C-indices then so is (i, j).

3. If i and j are C-indices then so is (i :j).

4. An object is a C-index only as required by 1-3.

We abbreviate indices made up by iterated applications of clause 2
by omitting parentheses under a convention of associating to the left.
So (0, 0, 0, 0) abbreviates (((0, 0), 0), 0).

For each C-index 4 a species C" of number-theoretic functions is now
defined. Actually, we want more: we want for each C* a formula, ab-
breviated « € C”, in I which is to express the property o« € C*. We shall
define such formulas a € C* by induction on 4 (4 and other C-indices
i, j, etc. being of course not symbols of I but of the metalanguage).
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The corresponding informal species C* are then just those such that
a € C" is expressed by the formula o € C*. Each such species consists of
Kleene-style representing functions (cf. [4]) of a certain class of func-
tionals, described below.

We make only slight modification of Kleene’s representing functions.
We do not insist that for © computing f from o«: (¢)(E!y)c(2°*1* &(y))
> 0, but only that (£)(Ey)t(2'* ! * &(»)) > O (then we can effectively (from
7, a) pick out for each #, uyt(2'* % a(y)) > 0, which will of course be
unique). Only this modification enables us to show (Lemma 5 below)
that for every A and every sequence number z, z can be extended to give
aeCh

We shall abbreviate Va(xe C" > 4(x)) and Ja(xe C* & A(x)) as
Vo A(«) and o A(«), and similarly in the informal case. We use {t}[2] =
B to abbreviate

Vedy[e(2 = &(p)) = B(1)+1 & Vz, ., t(2'* ! = a&(z)) = 0].

DEFINITION 2.
1. te C%is (abbreviates) T = 1.
2. If i and j are C-indices and & = (i, /), then 1€ C" is (1) e C' &
(1), e C.
3. If i and j are C-indices and h = (i :j), then t€ C" is
Vol Vedye (2t = a@(y)) > 0 & Vo/ VB[{t}[a] = B > Be C'l.

The species C" is the species of the representing functions of the inten-
sional countable (or continuous) functionals of type corresponding to .
The countable functionals were introduced by Kleene [4] and Kreisel [7];
the intensional ones, by Kreisel [8] p. 154. Both kinds of functicnals
can be treated in I via representing functions. But for the countable
functionals one must insure extensionality by introducing for every 4
both a species C" and an identity relation " such thate.g. when h = (i : j):

Va"VR' [y VoV [{a}[y] = 6 & {B}[v] = { = 16, )] ~ I'(w, B)]-

We are using representing functions without extensionality conditions
and this is just the way Kreisel obtains the intensional countable func-
tionals. Thus our formal results translate directly into higher types in
the theory of the intensional countable functionals.

3. The system I *

The system I™ is obtained from I by adding first as axiom Markov’s
principle for choice sequences:

M :Vxa(x) = 0 o Ixa(x) # 0.
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(M can be derived in I from the case of *M above in which x is a number
variable, while conversely with M and C below we can derive every
instance of *M 1 which x is replaced by o.)

Secondly, we complete I* by adding a principle corresponding to *C.
The evident form in which to take *C in this context would seem to be

Vod(A(a) v A(a)) & (VaiA(a) = IBB(B)) = 3B (VoiA(x) = B(B)).

As wil]l emerge from the work to follow, in the presence of M, this is
no stronger than the case:

**C  Ux(A(x) v A(x)) & (VxA(x) o IB'B(B)) = 3B (VxA(x) = B(B)).

We do not adopt **C but instead an apparently stronger principle. (We
have no proof that it is an actual strengthening.) For, it seems appropriate
to extend the continuity property (Brouwer’s principle of FIM §7) to
cover now functionals of arbitrary type. This can be combined conve-
niently with **C to give us our new axiom schema C. It should be noted
that C includes AC.

In stating C, we replace the hypothesis of excluded middle on 4 by a
structural condition which will insure excluded middle, but is more
convenient for our purpose, namely that A4(a, x) should be constructed
from prime formulas by use of propositional connectives and bounded
number quantifiers

Ix, <4 Iy csr VXicss Vxxés,

s a term not containing x (cf. FIM Remark 4.1). For short, we say A
has no quantifiers except bounded ones. It can be shown that this is
equivalent to the principle with the hypothesis of excluded middle on 4.

So, for A(w, x) containing no quantifiers except bounded ones, for
B(B) an arbitrary formula, i and j arbitrary C-indices and h = (i :j),
we have as axiom:

C: Vo/(VxA(a, x) > IBB(B))
VANV YIT(2 s E((1))) = B(1)+1 & Vz, <y 72 5 8(2)) = 0] 2
> [VxA(x, x) > B(B)]}-

Using FIM p. 30 *D, *E, etc., we can find a prime formula
G(z, o, B, ¢(t), t) equivalent to the formula in the scope of Vi, so that
C is equivalent in 7 to
C: Vo/(YxA(e, x) > IB'B(B)) =

IV Y@ {VLG(z, o, B, (1), t) o [VxA(a, x) © B(B)]},

where:
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FG(z, o, B, p, 1) ~ 12 1% &(y)) = B(t) +1 & Vz,, (2" = &(z)) = 0.

To indicate derivability in 7™ we use ™.

4. Realizability in I *

LemMma 1. (a) Let E be a formula of I containing free only the variables
¥ and containing no quantifiers except bounded ones. There is a primitive
recursive function eg[V] such that for each V'

(i) If (Ee) (¢ realizes-¥ E), then E is true-¥.

(i) If E is true-'P, then ¢g[V] realizes-¥ E.

Proor. By induction. Cf. FIM Lemma 8.4a. As there, if E is of form
P, A & B, A > B,114, let gg[V] = A0, {e4[V], e5[¥]), Aagg[P], At0.

Case 5. Eis Av B. Let ¢ 4(¥) be the primitive recursive characteristic
function of the predicate A expressed by A (FIM Lemma 3.3 and
Remark 3.4). Let

eg[P] = <At@4(P), A(sg(@a(P)) - e4[P (D) +59(0a(P)) - [ P1(1)))-
CaSE 6. E is Vx, . ;A(x). Let gg[¥] = AxAne,y,y [¥]
Casg 7. E is 3x, . (A(x). Let e5(P) be

<)-tltxx<s(~1’) A(T, x), SA(x)[T3 lex<s(~1')A( v, x)]),

where s(¥) and 4(¥, x) are the primitive recursive function and predicate
expressed by s and A, respectively.

LemMa 1. (b) For A as E in part (a) and ¥ = a, ¥, there is a primitive
recursive function gy, [¥'] such that for every ¥,:

(i) (Ee) (& realizes-¥YaA) - VaA is true-¥, .

(il) Vad is true-¥ — ey 4 [¥,] realizes-¥VaA.

(c) Similarly, for ¥ = a, ¥, there is a primitive recursive function
&yaa [V] such that for every ¥ :

(i) (Ee) (¢ realizes-¥YoA) —» VoA is true-¥,.

(i1) VoA is true-W, — ey, realizes-¥ Vo A.

Proors. (b) Let ey, 4 [P1] = Aae[a, ¥,], for &4 [a, ¥,] obtained by
part (a) of the lemma.
(©) eyaa[P1] = Avgy [, ¥y].

LeMMA 2. For every C-index h there is a partial recursive function ¢, [t]
such that

(i) (Ee) (¢ realizes-t 1€ C*") » 1€ C".

(ii) T e C* —» ¢,[1] realizes-t Te C".
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Proor. By induction on 4 we show: the formula 7 e C* contains no
v and all occurrences of 3 are in parts of the form IxP(x) with P(x)
containing no quantifiers except bounded ones, and hence expressing a
primitive recursive predicate. The proof of FIM Lemma 8.4b applies.

LEMMA 3. For every C-index h:
FrraeC' ~ e Ch.
ProoF. By ind. on A. IND. STEP.

Case 1. h = (i,).
Then
TraeC' ~1((@)y € C' & (x), € CP) ~
17(7(a)o € C* & 17(2); € C) [hyp. ind.] ~
17() € C* & 1(2); € C7 [*60d-f] ~
(2)oe C'&(2); € C/  [hyp.ind.] ~ aeC".

Cast 2. h = (i:j). We need show only o. Let the conjunction « € C*
be abbreviated E(x) & F(x). Assume 1o e C". By *25, (i) "1 E(x) &
T F().

We shall deduce first E(c). Assume (i) 37 3rVy 12" 1% B(»)) > 0. As-
sume BeC’ & Vy1a(2 1« B(y)) > 0. Then VB VeIpa(2' = B(y)) > 0,
i.e. 71E(a), contradicting (i). So, rejecting (ii), (iii) 7387 IrVy 1o (2 %
B(»)) > 0. Now assume (iv) f e C’. Using (iii), 713¢Vy 1a(2" 1= (1))
> 0, whence using M : Ve3ya(2' "= B(y)) > 0. By >-introd. from (iv),
etc.: (v) E().

Next we shall deduce F(«). Assume (vi) 387 3y3p[ViG(a, B, v, ¢(2), 1)
&1y e C']. (Cf. end § 3.) Then VB VyVo[ViG(x, B, 7, ¢(t), 1) © y € C7],
i.e. 7 F(a), contradicting (i). So rejecting (vi), (vii) 73/ Iy [VIG(, B, ,
@(t), t) &1y € C*1. Now assume (viii) f € C’ and (ix) V¢G(a, B, 7, ¢(2), 1).
Then using (vii), 17y e C’, whence by ind. hyp., y € C'. By >-introd.
from (ix), then V-introds., >-introd. from (viii), V-introd.: (x) F(«).

Combining (v) and (x): « € C".

In Lemma 5 below we establish that for every C-index A, every finite
sequence of natural numbers can be continued to give a function in C”.
We need this (a) as a formal result in I and (b) as an informal result
with in this case the additional information that the continuation can
bz given primitive recursively.

Lemma 4 provides two results needed in the proof of Lemma 5.
(Proofs in these lemmas hold in Kleene’s basic system B; cf. FIM p. 8.)

Lemma 4. (a) VsVzVw[B(s,z) & w = z o B(s, w)]
FgVss<,32B(s, z) = 3zVs,<, B(s, 2)
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(b) FpSeq(x) &m < (x)y &y < Ih(x)= 1>
2 T p < x.

k<y

Proors. (a) Like FIM *26.5.
(b) Let the hyps. be (i)-(iii), respectively.

By (ii), m < (x)o; so (iv) 2m*1 < 20,
By (iii), v < Ih(x) = 2 < h(x) = 1.
So (v) Mot = T1 pids <
k<y k<lh(x)—2
P+t [using also (i)].
k<lh(x)—1
Thus 2+ 1y T pest < 20 il P (iv), *21.1] <
k<y
2(x)o . 1—[ p(x)k+1[(v)] = x.
k<li(x)~1

LemMMA 5. (a) For every C-index h
Fp3tVzgeq) Ext'(1, 2),

where Ext"(t, z) abbreviates Ast({z,5)) € C" & VS, <jy(zy 1(£2, 8> )+ 1 = (2);.
(b) For every C-index h there is a primitive recursive function t such that
(2)seqe EXt"(1, z), where Ext"(z, z) is expressed by the formula Ext*(t, z)

of (2).

ProOF. We give a detailed formal proof of (a). The corresponding
informal argument establishes (b), when supplemented by the observa-
tions that the definitions of 7 in Case 1 (iii) and Case 2 (iii) below are
primitive recursive (using ind. hyp. in Case 2), and that this remains true
if we consider these definitions as yielding functions 74(z, x) of two
variables z and x. Then in the final paragraph let t({z, x)) = 7(z, x)
and avoid the application of *2.1. (Alternatively, we could establish (b)
with a general recursive, but not primitive recursive, T by using (a),
FIM Theorem 9.3(a) with Lemma 8.4b (i), etc.)

PrOOF of (a). By induction on 4.
IND. STEP. CASE 1: /i = (i, ). Assume from ind. hyp.

(i) VZseq(z) Exti(ri, z) and (ii) stEq(,)Extj(tj, z).
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Introduce t:
(%)), = 1if (x)1 < Ih((x)o),
<7< H P exp (((x)o)e=1)o +1), (x) 1),

k<Ih((x)o)

1(( H peexp (X)o)e=1)1 +1), (%))

((x)o)
otherwise.

(i)  Vxt(x) =

Assume (iv) Seq(z). We easily deduce from (iii) and (iv):
(V) Vss<lh(z) T(<Za S>)+ 1 = (Z)S'

Next we shall deduce

(@) (Ast(<z, 5)))o € C'. A parallel deduction would give

(b) (Ast(<z, D)), € €. Let (vi) w =] [x<iniy P exp(((2)k — 1)o +1); s0
Ih(w) = Ih(z). From (i): (vii) Ext'(t;, w) whence (viii) Ast,({w, s)) € C'.
We shall deduce (ix) (z(<z, s)))o = 7:({W, s)), whence by V-introd. and
(viii): (a). For (ix) use cases (s < lh(w), s = Ih(w)).

Case A: s < Ih(w) = Ih(z). Then (t(<z,5)))o = ((2)s=1), [case A
hyp., (iii)] = (w),=1 [(vi)] = 7,(<w, 5>) [(viD)]-

Case B: s 2 Ih(w) = Ih(z). Then (7(<z,5)))o = T:({] [x<umz Px €XP
(@)= 1)o+1), )I([ii)] = 7(<w, sH)I(vi)]-
Now from (a) and (b): Ast(<z, s)) € C*. Then with (v): Ext’(x, z).

CASE 2: h = (i :j). From ind. hyp.: (i) Vzgeq(,) Ext'(z, z). (We do not
need the part of the ind. hyp. for j.)

First we shall deduce (a) Vzg.q(;, 37" 7(lh(2)) = z. So, assume (ii) Seq(z).
We use the following abbreviations for terms in introducing 7 in (iii)
below.

q(x, z) = pm, 2"t = 1h(z)
k(z, X, m) = pyy<me -1 (2" e I1 pm 1) > 0

n<y

u(t,x,z) = [] pmexp(=Q@™ = JI pO)).
m<g((x)o, z) n<k(r,x,m)

Now we propose to introduce ¢ under Lemma 5.5(c). Verification that
the cases in (iii) are exhaustive and exclusive is routine. To show that the
fourth case could be brought under (c) of the lemma by appropriate
use of *B, etc., use Lemma 4(b) to justify the case hyp. To justify the
corresponding definiens, assume m < g((x)o, z). Under the case hyp.,

Seq (x) & yy <=1 72" 1 [T pEP%+1) > 0.

k<y

So by *E6, k(t, x, m) < Ih(x)=1. Then by Lemma 4(b)
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2" s To<kexum Pi*t < x. So u(z, x,z) can be expressed from 7(x)
and z.

(z),=1 if x < Ih(z),

({2, (x)o=1>+1 ifx = Ih(z) & In(z) £ 1,

1 if Seq (x) & x = Ih(z) & 2°° < Ih(z),
(i)  Vxt(x) = ! t;(Ku(z, x, 2), (x)o=1))+1 if Seq (x) &

26% > In(z) & Ih(z) > 1 &

+1 n
va<q((X)o.2) 3yv<lh(x); 1 T(zm * H pfnx) +1) > 0,

n<y
0 otherwise.
Then: (b) T(lh(z)) = z.
To obtain t € C* we must deduce
(c) YeVe3yr (2 s a(y)) > O,
(d) Yo/VB[V1AyG(z, o, B, y,t) © fe C'].(Cf. end §3.)

Towards (c), we shall deduce first:
(iv) v#(2'*' < Ih(z) o Fyr(2 s a(y)) > 0). Assume2'*! < Ih(z).
Letting x = 2" '« &(lh(z)), we can deduce
Seq(x), x > Ih(x) = Ih(z)+1 > Ih(z), and 2° = 2! < Ip(z).

So by (iii): 7(x) = 1, whence (iv). Next we deduce
(v) 3y = a(y)) > 0, by cases (2! < Ih(z), 2+ = Ih(2)).

Case A: 2'*1 < Ih(z). Use (iv).

Case B: 2"+ = Ih(z).

SUBCASE B.1: Ih(z) < 1. Then 2'* 1% &(0) = 2'** = In(z). So

(2% q(0)) = 7,(<z, £))+1 [(iii)] > 0.

Suscase B.2: Ih(z) > 1. Using case hyp., ¥149a, etc., we can assume
prior to 3-elim.:

(vi) my < t+1&2™ = Ih(z) & VYm(m <m, > (m < 1+1 & 2™ = Ih(z)).
Using subcase hyp. and
(vi): 2™ > 1, whence m; > 0. So (vii)m; =1 < m; < t+1[(vi)].

Then ~(m; =1 < 41 & 2™ 2 Ih(z)) [(vi), (vii)], whence with (vii)
again: (viii) 2™~ ! < Ih(z). From (vii), (viii) and (vi), etc., and 3-introd.:
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(ix) Im(m < 1+1 & 2" < Ih(z) & 2"+ 2 Ih(2)). Assuming m < q(t+1, z),
we can deduce 12" > Ih(z) [(ix), *E5], whence 2"*! < Jh(z) and then
by (iv), Iyz(2"* '+ a(y)) > 0; and so easily: Iwdy, ., (2" = &(y)) > 0.
Letting B(s, w) be 3y,.,7(2°"* % a(y)) >0 we have thus by =- and
V-introd.: (x)Vm(m < q(t+1,z) > 3IwB(m, w)). Also we can deduce:
(xi) VsVzVw(B(s,z) & w = z © B(s,w)). Now using (x) and (xi) in
Lemma 4(a), assume (xii) Vm(m < q(t+1,z) > B(m,w)). Let x =
2'*Lia@(w+ 1). Then (xiii) Seq(x), (xiv) w+1 = Ih(x) =1, (xv) 2%° > Ih(z)
[case hyp.]. Assuming m < g((x),, z) = q(¢+1, z) we can deduce from
(xii) a formula from which we may assume: y < w & t(2"* = a(y)) >0,
whence with (xiv), etc.: y < Ih(x)=1 & (2" %[ [,<, p"**) > 0. Thus
by 3-, o-introd. etc.:

(xvi)  Vm(m < q((x)o,2) > 3J’y<zh(x);1‘E(ZMH* n<ypflx)n+l) > 0.

Using (xiii), (xv), subcase hyp. and (xvi) in (iii): 7(x) = 7,(Cu(z, x, z),
(x)o=1>)+1 > 0. By 3-, V-introds., (v). From (v) easily: (c).

Now towards (d), assume (xvii) « € C¥ and (xviii) V¢3y G(z, o, B, , 1).
We shall deduce (e) B € C* by cases (lh(z) < 1, Ih(z) > 1).

Case 1: Ih(z) £ 1. Assume from (xviii), 7(2'**# &(y)) = B(t)+ 1. Now
21w q(py) > 1 2 Ih(z) [case hyp.]; so B()+1 = (2" = a(y)) = 7.z,
t)+1 [(iii)], whence B(¢) = 7,(<z, t)). By *0.1 and V-introd. and using
(i) and (i): pe C'.

CasE 2: Ih(z) > 1. Since Ih(z) < Ih(z)+1 & 2"®@*! > Ih(z), we have
(Xix) EItt<lh(z)+12t+1 2 lh(Z) Let (XX) M = .utt<lh(z)+1 A 2 lh(z)
Using *2.2 with (xviii), assume (xxi) V¢G(z, o, B, ¢(¢), 7). Let (xxii)
w =[le<pmPe exp(z(2* *# a(¢(r)))). Then (xxiii) Seq(w) and (xxiv)
Ih(w) = M. We shall deduce (f) B(r)+1 = t;(<w,2))+1 by cases
(z < Ih(w), t = Ih(w)). CASEA: ¢ < Ih(w). Then B(r) +1 = t(2** 1= &(e(¢)))
[(xxi)] = (w), [case hyp., (xxii)] = ©;({w, t))+ 1 [(xxiii), (i), case hyp.].
CasE B: ¢ 2 Ih(w). Now (xxv) 2'*1 =22 2 2- 2H0) = 2M*1 [(xx1v)]
2 Ih(z) [(xix), (xx)]. So (xxvi) 2'*1&&(¢p(2)) = lh(z). Also, from (xxi):
(2" 1= &@(¢p(2))) > 0; so the last case in (iii) is not the one used in evalu-
ating 7(2'* ! &(¢(¢))). But similarly the first three cases are ruled out by
(xxvi), case 2 hyp. and (xxv), respectively. So the fourth case applies
and thus: (xxvii) 7(2°* 1% &(@(2))) = 7 u(z, 2" 1= a@(p(2)), 2), £)) + 1, and
(XxXViii) V< 1,2) Wy<pin T2 5] [o<, PE™T1) > 0. We have (xxix)
M = Ih(w) [(xxiv)] < ¢ [case B hyp.] < t+1 and (xxx) 2M*! > J(z)
[(xxv)]; so Imy,<4,2"" " = Ih(z). Now q(t+1,z) = umy 412" =
Ih(z) and by *E5 if M < g(¢t+1, z) then 712M** > [p(z), contradicting
(xxx), but also if M > g(¢+1, z) then we contradict (xix)-(xx). So (xxxi)
q(t+1,z) = M. Let K(m)=k(t, 2" xa(p(t)), m). We deduce (xxxii)
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Vm(m < q(t+1, z) o K(m) = ¢(m)), as follows. Assume m < g(t+1, z).
By (xxviii): (xxxiii) Iy, <o) T(2"F 12 &(p)) > 0. By (xxi): (xxxiv)
(2" 1w d(p(m))) > 0 & V0, < o(m T(2" 1% &(v)) = 0. Since

K(m) = ”yy<¢(t)1(2m+1* o’c(y)) > 0,

we can use (xxxiii) and *ES5 with (xxxiv) to show K(m) « ¢(m) and
K(m) % ¢(m), whence K(m) = ¢(m). Thus by o-introd. etc.: (xxxii).
Thence

u(t, 2715 8(@(1))), z) = Tn<aa+1,2 Pm eXP(2Q2" %] L< pgmy PXCOO))
=[Tn<mPmexp(z2™" = &(@(m)))) [(xxxi), (xxxiii)] = w [(xxii)].

So B()+1 =2 =a(e(r))) [(xxi)] = 1w, t>)+1 [(xxvii)]. Thence
B = Att;({w, t)) and by (xxiii) and (i): e C".

Now by o-introd. from (xviii), (xvii), etc.: (d).

Combining (c) and (d): 7 € C*. Then with (b): (a).

Next, from (a) by *2.1, etc. (with Seq(z) v 1Seq(z)):

V25,4, (AsT({z, 5)) € C* & Ast(<z, $))(Ih(z)) = 2).

Assume prior to J-elim., Vzgq)(A51((z, s)) € C* & Ast({z, 8))(Ih(z)) =
z). Then if Seq(z), Ast({z, s))e C"* and if s < Ih(z) : 1(z, sH)+1 =
(Ast(z, 8)(Ih(z))); = (z),. Thus Ext*(z, z). So finally, 3t Vzg.q(,) Ext(x, 2).

THEOREM 1. Using Markov’s schema M: if T +* E and the formulas T’
are realizable, then E is realizable.

Proor. The proof of Theorem 9.3(a) in FIM pp. 105-109 provides
all that is needed except for the cases in which E is M or an axiom by C.

Case M. Use Theorem 11.7(a)¢ of FIM pp. 129-130, with a(y) # 0
as A(x, y). The realizing function can be taken to be simply An{uya(y)
# 0, &,5)%07, using FIM Lemma 8.4a. The argument is classical, as
indicated by the superscript C on the theorem number, but the only non-
intuitionistic principle is M (used at line 3 of the proof on p. 130).

Cast C. Suppose (1) ¢ realizes-¥ the hyp. of C. Then for every a, 7, #:
if 7 realizes-a o € C7 and n realizes-¥, o« Vx A(«, x) then {{{e}[«]}[7]}[1]
realizes-¥ 3'B(B). Thus, using Lemmas 2 and 1(b): (2) if = realizes-a
a e C’ and 7 realizes-¥, o Vx A(2, x), then

ole, o ¥] = {{{e}[a]}[e; [0} [eveac, Lo P1]

realizes-¥, o 38 B(B).
Now define the function ¢ of &, a, ¥ by @[e, o, P] = {{{e}[«]}[¢;[2]1}
[eyxac,xy [@ P1]. Since @[e, a, P] = Ato(e, o, ¥, t) is a partial recursive
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function there is by the normal form theorem (/M Theorem XIX p. 330)
a Godel number e of ¢ such that

(3) oe; 0, P, 1) ~ U(uyTr* (e, &(v), a(»), (»), 1)),
where
(Ey)Ty " (e, &(»), a(v), (), 1) = (E' )T (e, &(»), &), T (), 1).

Also, A(a, x) expresses a primitive recursive predicate A(a, x) [FIM
Remark 3.4 p. 13]. So there is by the normal form theorem [IM Theorem
IX p. 288] a Godel number f (of the representing function of A(a, x)
considered as predicate of «, ¥, x) such that:

4 A, x) = Uy T(f, &(»), ¥(»), x)) = 0,
(% A, x) = Uwy T (f, &), P(»), ) = 1,
where

@P)X)(E TS, (), P(3), x)-

I. We want to define (primitive recursively from & with ¥ as parameters)
a function 7 with the properties expressed in the conclusion of C. Our
aim is to make 7 represent the following algorithm 7~, which works on
a given ¢ and a given initial segment &(x) of a function a to give effectively
either a value B(¢) or the answer that no value B(f) can be computed.

(From now through the definition of 7 in (21) below, except for
Remark 1, we let &, ¥ be arbitrary (not necessarily satisfying (1)) as we
describe 7 and t uniformly in ¢, ¥.)

Given &(x) and asked to determine B(¢) the algorithm J first deter-
mines whether the following are satisfied.

(a) x> 1,
(b) (5)s<(Ey),<x(B(s) is determined by 7 from a(y)).

If not (a) or not (b), J signals that it can compute no value for ()
from &(x).

If both (a) and (b), 7 next determines if there is for this &(x) a
refuting pair of numbers (s, @(y)) — i.e. a pair of numbers s < x and
&(y), y < x, such that T,;*(f, &(y), Z(»), s) & U(y) = 1; so that by (5):
A(a, $).

If there is such a pair, J~ computes B(¢) to insure B e C' as follows.
First 7~ looks back (using (b)) to determine if there is #; < # such that
the computation of f(z;) by J requires a segment &(x,), x; < x, such
that there exists for &(x,) a refuting pair. Setting 7, = least such #; if
one exists (=t otherwise), 7 then computes B(¢) as t:({B(t), £D),
using the primitive recursive function t; given by Lemma 5(b).
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If there is no refuting pair for &(x), 7 determines if for any
y<x T" (e, &(y), @(»), P(y), t). If so, 7 computes B(r) as U(p)+1 =
o(s, o, ¥, 1)+1 [(3)]. If not, J signals that it can make no computation
of B(¢) from a(x).

(ReMARK 1. That 7 associates a function B e C* with every a e C’
then follows, using M, provided that ¢ satisfies (1) above (details below)).

We shall represent 7 by a function t so that in computing B(¢) we
apply 7 to arguments 2'*!x@(x) for increasing x. We shall arrange
that t(u) = O unless Seq(u) & lh(u) > 1.

Towards defining t by primitive (course of values) recursion, we first
observe that if we put z = &(x), the condition (a) & (b) becomes
(6)  P(z,z, 1) = Ih(z) > t &(5)s< Ek)kainizyo(2F '+ [] pP") > 0.

i<k

Then easily
) P(t, &(x), t) & x; = x = P(7, d(x,), t).

Further, it is easy to find a primitive recursive predicate P'(w) such that
letting
(8)  B(u,t,z) = Seq(u) & lh(u) > 1

&t=(up=1&z= [] p,

i<lh(u)=~1
we can show

) B(u, t, z) > [P(z, z, t) = P'(T(w))].

Next the condition that there is for z = &(x) a refuting pair is expressed
primitive recursively by

(10) Ref(¥,z) = (Es)s<lh(z)(Ek)k<lh(z)

(T(f. T1 P, ¥(k), 5) & U(k) = 1).
Clearly: =
(11) Ref(¥, a(x)) & x; = x - Ref(¥, a(x,)).

Now, if 7 computes a value p(s) for s < ¢ from some proper initial
segment &(y) of z = &(x), the length y of that segment is given by

ﬂyy<lh(z)7:(2s+1* HPEZ)l) > 0ifs < t,
i<y

0 otherwise.

(12) Y(z, 2,5, 1) = {
Clearly:
(13) Y(t,2,5,t) < Ih(z).
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Again, it is easy to define a primitive recursive function Y'(s, w) such that
for B(u, t, z) as in (8):
(14) B(u,t,z) - [Y(1, 2,5, 1) = Y'(s, T(u))].

For s < ¢ the sequence number B(s) giving the accumulated values of

B determined by z = d(x) (if any) is given by

[Tpiexp (=2« ] p{P)ifs <t
(15) Z(x,z,s,t) = | <5 J<Y(,z,i,)
1 otherwise.

Using (13) and (14), we can find a primitive recursive function Z’(s, w)
such that for B(u, t, z) as in (8):

(16) B(u,t,z) - [Z(1, 2, 5, 1) = Z'(s, T(u))].

The least s < 7 (if any) such that the computation of (s) by t requires
a z for which there is a refuting pair is

(17) W(¥,t,z2,t) = us,c, Ref (¥, ] p%).

Ji<Y(z,z,s,t)
Again, using (14), we can find a primitive recursive W’'(¥, w) such that
(18) B(u,t,z) » [W(¥, 1,2, t) = W/(¥,%(u))]

Following 7~ we shall need, if P(z, z, t) & Ref(?, z), the sequence
number B(W(¥, 1, z, t)). Using (15) and (17) this is given by

(19) V(P,t,2,t) = Z(t, 2z, W(¥, 7, 2, 1), ).

Using (16) and (18)

(20) B(u, t,z) > [V(¥,1,2,t) = Z'(W(¥, 1, z, t), T(u))
= 2 (¥, 7)), T

Now we can define ¢ uniformly from ¥, ¢, writing for short # = (u), =1
and z =[[i<pu -1 P\ and using t; provided by Lemma 5(b) so that
(21) (S)Seq(z) EXti(Ti ’ Z)-

(1+7,(V(P, 7, 2, 1), 1) if Seq(u) & Th(u) > 1 &
P(z, z, t) & Ref (¥, z),

1+ (U(:uyy§lh(z) Tnm+ l(e’ 5(J’)a H sz)i, '7(,")’ t))o

(22)  +(w) = o

if Seq(u) & Ih(u) > 1 & P(t, z,t) & Ref(¥, z) &
(Ey)y<lh(z) T:H- 1(‘39 E(J’)a H sz)i’ ?(y), t)’

i<y

0 otherwise.
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Using (9) and (20), we see that t is defined by primitive (course of values)
recursion.

Assuming t(2' "'« &(y)) > 0, we have P(z,a(y), ), whence y = lh(a(y))
> tand (8)s</(Ek)<, (2" = a&(k)) > 0. So

(23)  @OMOET = &(y) >0y >t
& (5), <i(Ek)y <, 7(2° 1 &(K)) > 0).

II. For the 7 just defined we next want to show © € C*. We need:

Q) (@Y(@E)Ey)r(2*t=a(y)) > 0, and
(i) @YBNO(EY (@ #a(y)) = () +1 &
(2)o<, (2@ 1 a(2)) = 0) > e Cl.

Towards (i), assume (24) « € C’. We shall deduce

(iii) ()< Ey)e(2" " &(y)) > 0 — (Ey)r(2™ "= &(y)) > 0.
Assume (25) (8),<,(Ey)t(2** ' #a(y)) > 0. Assume further
(26) (Ey)r(2* 1= a(y)) > 0.

Suppose (27) Ref(¥, @(y)). Using (25) choose y; large enough so that
yy > max(y, t, 1) & (8)s<,(Ey), <y, ©(2° 1= a(y)) > 0. Then letting u =
2*txa(y,), we have Seq(u), lh(u) =y, +1 > 1, P(z,&(yy), 1) [(6)],
Ref(¥, a(y,)) [(27), (11)]. So by the first case of (22), (2" '+ &(y,)) =
©(u) > 0, contradicting (26). So, rejecting (27): Ref(¥, &(y)), whence
(28) (») Ref(¥, &(»)), and by (10): (29) (¥)(Es)s<y(ER )<, (T (. LK),
¥ (k), s) & U(k) = 1). Now if for any s A(«, s) then by (5) for some y
T,"(f,a(y), P(»), s) & U(y) = 1, and then letting y, = 1+max(y, s):
(ES)s <y, (EK )<, (T"(f> 8(K), P(K), s) & U(k) = 1), contradicting (29).
So A(x,s), whence (30) (s)A(x, s). Thea by Lemma 1(b), eysucs
realizes-¥, « VsA(a, s). Also by (24) and Lemma 2, g[x] realizes-o
aeC’. So by (2), ¢le, o, V] realizes-¥, « 3B B(B). So in particular
@(e, o, ¥, t) is defined. By (3) (Ey)T,"" (e, &(y), &(y), P(y), t). Assume
(30) T," (e, &(»), a(y), T(»), t). Using (25) choose y, large enough so
that y, > max(y, t, 1) & ()s<(Ey),<,, ©(2** *#&(y)) > 0. Then letting
u=2*1xq(y,): Seq(u), Ih(u) =y, +1 > 1, P(z,&(y;), 1) [(6)], Ref(¥,
(y1)) [(28)], (Ey)y<y, Tw"* (e, &(»), &(y), (), ). [(30)]. So by the
second case of (22): t(2'*!'x&(y)) = t(u) > 0, contradicting (26). So
rejecting (26): (Ey)c(2*'#a(y)) > 0. By M, (Ey)t(2*'=a(y)) > 0.
Finally from (iii) by course of values induction, (t)(Ey)z(2'"*=a(y)) > 0,
and then, discharging (24): (i).
Towards (ii), assume (31) c e C/ and

(32)  (EYQR" " a(y) = B1)+1 & (2),<,7(2" "+ &(2)) = 0].
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Using (31) and (i): (33) (¢)7(2"* *=a(y,)) > 0 where y, = uyr(2** '« a(y))
> 0. Then using (32): (34) (1)B(*)+1 = t(2** '+ a(y,)). Using (23):
(35) ()(1)(s £ t = ¥, < ). By (12): (36) (s)()(s < t = Y(z,&(y,), s, 1)

= ys)'

We shall show
(iii) (Ey) Ref(¥,&(y)) » BeC.
and
(iv) (Ey) Ref(?,a(y)) » peC'.

Towards (iii), suppose (37) (Ey) Ref(¥, a(y)).

Let (38) r = uy Ref(?, &(y)). By (33), (2" *=a(»),) > 0. By (23),
¥, > r; 50 (Es)ys = r. Let (39) R = usy, = r. Then (40) (Es),<x Ref(?,
&(y,)), for if s < R &Ref(¥,a(y,)) then s <R&y,=r [(38)],
contradicting (39).

We shall show (41) B(?) = t[[s<r P2©**, f) by cases (t < R, t = R).

Cast 1: ¢ < R. Use (21).
CasE2: ¢ 2 R.Then y, = yg [(35)1 = r [(39)]. So by (38) and (11):

(42) Ref(¥, &(y,)). We shall show (43) W(¥, 1, &(y), t) = R by cases
(t=R,t>R)

CASE A: t = R. NOW lf (lA) (ES)_K, Ref(ql’l__[j<Y(t,E(y¢),s,t)pj exp
(@(31));), then (Es),<, Ref(¥,[];<,.p;exp@(y:));,) [(36)], whence
(Es)s<: Ref(¥, &(y,)) [(35)]. But this contradicts Case A hyp. and (40).
So, rejecting (1,), we obtain (43) (cf. IM pp. 225, 229).

Case B: t > R. Then W(Y, t, &(y,), t) = uss<, Ref(¥, a(y;)) [(17),
(35), (36)] = R [(39), (38), (11)]. - This shows (43). Then

(44) V('I’, T, &(y,)t), = Z(T, o'c(y,), R, 1) [(19), (43)]
= ]:Lps exp(t(2*1=  [[  pjexp@(y,));)) [(15), Case2hyp.]

J<Y(z,a(yt), s, t)

= 1:[Rps exp(t(2°* 1 = &(y,))) [Case 2 hyp., (36), (35)].
Now B(£)+1 = 1(2*"1=a(y)) [(34)] = 1+7,(V(¥, 7, &(»,)), 1) [(22),
(42)] = 1+ 7; ([ [s<rps exp (2(2°" 1 % @(y5))), 1) [(44)] = 1+ 7;([Ls<r s
exp (B(s)+1), ¢) [(34)]. Thence, (41).

Now from (41) and (21): B e C".

Next, towards (iv), assume (45) (Ey) Ref(¥, &(»)). Then t(2'* 1% a(y,))
= B(1)+1 [(34)] > 0. So by (22) with (45): (46) (EV),<,, T"* (e, £(»),
@(y), Z(y), t). Then (47) B()+1 = (2" 1= a(y,)) [34)] =1+ (U(wysy.
Tnm+ l(ea E(y)’ [i(y)’ W(y)’ t)))O . Also from (45)’ (Ey)(Es)s<y(Ek)k<y
(TS, a(k), P(k), s) & U(k) = 1). Thence (Es)(Ek)T"(fa (k), P(k),s)
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& U(k) = 1). So by (5), (Es)A(a, 5). Then (s)A(, s), whence (s)A(a, 5).
Then eysuq,s) [V, ] realizes-¥, o Vs A(x, s) [Lemma 1b]. Also by (31),
g;[0] realizes-a e C/ [Lemma 2]. So by (2), ¢[s, o, ¥] realizes-¥,
« AR B(B), and thus (¢[e, a, ¥1), realizes-¥, o, (p[e, o, 1)y BeC' &
B(B). So (¢le, o, ¥1),,0 realizes-¥, a, (¢[e, o, ¥1)o f € C'. Then e C*
is true-(@[e, o, Y1), [Lemma 2]. But by (3) with (46)-(47): (¢[e, ¢, ¥1)o
= B.So BeC. -

Now from (iii) and (iv), (48) B e Ci, for if fe Ci, then from (iii)
(Ey) Ref(, a(y)), whence from (iv), fe C'. And from (48) and (the
informal analogue of) Lemma 3; f € C'.

Finally from (i)-(ii), we have (49) 7 € C" is true-t and so by Lemma 2:
(49) &[] realizes-t T € C™.

III. Next we must find a function to realize-¥, t the formula

(*) VoVBYQ[VI[(2(27 '+ &(e(1))) = (1) +1

& V2, <y 12 5 0(2)) = O] © (YA, x) > B()].
Suppose for some o (v) 7 realizes-o o € C/, and for some B, ¢, {:
(vi) { realizes-a, 1, B, @ Vt[t(2' " = a(p(2))) = B(1)+1 &

VZ, < o0 T(2* " 1 % 8(2)) = 0], and for some #:

(vii) 7 realizes-¥, o Vx A(a, X).
Then by FIM Lemma 8.4a(i) and (vi):
(1) (OERT s &p() = B(1)+1 & (2).< o2 '+ &(2)) = 0).
By Lemma 2 and (v):
(52) xe C.
By (i) of II with (52): (53) (#)r(2"'=a(y,))>0, where y,=py
(2*t=a@(y)) > 0. From (51) and (53):
(54) ¥ = o(t).

By Lemma 1(b) and (vii): (x)4(x, x). So by (4) (x)(U(wT,"(f, a(»),
Z(y), x)) = 0). Thea easily from (10), etc.: (55) (Ey) Ref(¥, a(y)). By
(22) with (53) and (55): (56) (Ep),<,, Ti" "' (e, &(»), &(»), P(»), t). Then
(57) BO)+1 = (2" xa(y,) [(51), (54)) = 1+ (Ulup, <, " (e, &(3),

Now from (v) and (vii) with (2): (¢[e, @, ¥]), realizes-¥, a, ([, o,
Y1), BeC' & B(B). Then using (57), (¢le, a, ¥1),,; realizes-¥, «, B

B(B).
So, to realize (*) we use yle, ¥] = AaAnABA@ALAn(ole, o, ¥1),,,

IV. In conclusion, to realize-¥ C we use Ae{r, {gy[7], xle, P1>>.
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5. Normal forms in I

Preparatory to the normal form result in Theorem 2, we must establish
a number of lemmas.

LEMMA 6(a). Let A(a, ¥') be a formula of I containing no quantifiers
except bounded ones and containing as free variables exactly o, ¥. There
is a prime formula S(z, ¥) containing as free variables exactly z, ¥ such
that

FgVad(a, ¥) ~ VzS(z, ¥)

Proor. By FIM *D, *E, etc. we can find a prime formula P(a, ¥)
with A(a, ¥) ~ P(x, ¥). By Lemma 6(b) of [3] there is a prime formula
S’ such that P(a, V) ~ VxS'({at, ¥D(x)) ~ VxS'([ [;<xp:i exp(1 +<a, ¥)
(i)~ VxS'([Ti<x piexp(1+(2°?% C¥H(0))). Let S(z, ¥) be S'([ [i<aro P
exp(1+ (2@ 1« (P)(i))). We shall deduce VaVxS'([]i<xp: exp(l+
(2*® % (P (i)))) ~ VzS(z, ¥), abbreviated (i) ~ (ii). Assuming (i) and
putting & = i(z);+; =1 and x = (z), we deduce S(z, ¥), whence (ii).
Assuming (ii) and, for reductio ad absurdum, 71S'([]:<xp: exp(1+
(2@ % (P)(i)))) we can let z = 2% &(x), whence 15" (J Ti <y, P: exp(1+
(2@i+171 4 {P)(i)))), contradicting (ii); so by *158, etc., (i).

LeMMA 6(b). Let A(x, ¥) be as in part (a). Then for every C-index h:
F* Vot A(a, P) ~ Yod(a, P).

Proor. For o, obtain P and S’ as in the proof of (a), so that
(i) Vo, P[A(x, P) ~ VxS’ ({a, PD(x))]. Assume (ii) Va"A(x, ¥) and
(iii) Je14(x, ¥), whence assume -1A4(x, ¥). By (i), VxS'(Ka, ¥)(x))
whence by M, 3x1S'({a, ¥)(x)). Assume (iv) 1S’({a, ¥)(x)). Via
Lemma 5, assume (v) e C* & B(x) = a(x). Then by (iv): 1S'({B, ¥>
(%)) So VxS'({B, ¥)(x)), whence from (i): (vi) 14(B, ¥). But (v) and
(vi) contradict (ii), so rejecting (iii): 13«14 (x, ¥), whence Vo A(a, ¥).

LeMMA 7. Suppose A(x), C are formulas containing no quantifiers
except bounded ones, C not containing x. Then

F*(VxA(x) > C) o Ix(A4(x) = C).
ProoF. <: Use *98a.
>: Assume VxA(x) o C. Then 1C o Wx A(x).

By M, (i) 1C > 3x714(x). Case 1: C. Then A(x)> C. whence
Ax(A(x) > C). Casg 2: 1C. Then by (i), 14(x). Thence A(x) > C. So
Ix(A(x) = C).



[19]1 Choice sequences and Markov’s principle 51

LeMMA 8.
F*Va"axB(a, x) o IO Pvatyy[(z(2*&(y)) > 0
& Vz,<,7(2*&(z)) = 0) > B(a, 7(2*&(y))=1)].

PROOF. Assume Vo 3x B(a, x). Thence easily Vo*3B B(a, $(0)). Apply-
ing C, assume

7€ COP & VYRV [V(B(H)+1 = (2" = a(e(t)))
& Yz, <y o(2 1% &(9(1))) = 0) = B(x, B(0))]-

Assume o€ C". From te COM:VrIyt(2*1+a(y))>0. Then by *2.2
assume Vt(2*1xa(y()))>0. Introduce ¢ and B :Vto(t) = w,<yw
(2= a(y)) > 0, Vip(z) = ©(2* 1= a&(e(¢)))=1. Thence V¢(B(1)+1 =
(21 @((1))) & Yz, <y T2 2 @(9(2))) = 0). So B(a, f(0)). Also
B(0) = 72+ &(¢(0)))=1, and @(0) = Uy, <y ©(2 # &(y)) > 0, where
t(2 = a(Y(0))) > 0. So, assuming (2= &(y)) > 0 & Vz,.,7(2 = &(z))
=0, we deduce y = ¢(0). So B(0) = ©(2=a(y)))=1.

LEMMA 9. Let E(t, a, 8, @, t) and F(8, y) be formulas of I'* containing
no quantifiers except bounded ones. Then for any C-indices h and j there
is a C-index k and there is a prime formula S(t, x) such that

F* 3" VOV @[ VLE(z, a, 8, @, t) © YyF(3, y)] ~ 37*VxS(z, x).

PRrROOF.
F* 3TV VoV e[ VE(z, o, 8, @, t) o YyF(S, y)] ~
IVaVSVeVy[VIE(T, o, 5, @, t) D F(S, y)] [+ 95]
~ 3t"VaiVSVVy3t[E(, o, J, @, t) D F(5, y)] [Lemma 7] ~
3thVal- %0937 H(1, «, t) [where H(z, o, t) abbreviates
E(7, (@)o,0,05(%)o, 0,15 (@)o,15 1) 2 F((@)o,0,1, (2)1(0))]
- 3,[;.31,,(0:(1', 0’0’0))Voc(j’°’°’°)VyJ(t, ", o, y)
[Lemma 8, with J(z, #, a, y) abbreviating
2 =a(y)) > 0 &Vz,.,n(2 = &(z)) = 0)=> H(r, o, 1(2 = &(y))=1)]
~ 321 (9:G0,0,00 3 0.0,0.0,05 (2),, (<), , (2)y, ()o(0))
~ ®:0:0, 0,000 vy J((1)g, (), (@)1, (2)o(0))
[Lemma 6(b), observing that only bounded quantifiers appear in H and
finally in J] ~ 37*VxS(z, x) [Lemma 6(a), and letting k = (h, (0 :
(J, 0, 0, 0)))]. By Lemma 6(a), S is prime.
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THEOREM 2. For every formula A of I there is a C-index h and there is
a prime formula A’ such that (for o, x variables not free in A):

FT A~ JoVxA'.
Proor. By induction on the number of logical symbols in 4.
Basis. A is prime. Let 7 be 0 and A’ be A.

IND. sTEP. We have cases 4 is B& C, Bv C, etc. By ind. hyp.
B ~ 30/ Vx B’ and C ~ 3y'VxC’ for prime formulas B’, C'.

Casel., Ais B& C. Then A ~ B& C ~ 3o/ VxB'(x, x) & Iy'VxC’
(7,x) [ind. hyp.] ~ 3o/ Iy* Vx(B'(2, x) & C’'(y, x)) [*31, *87] ~ Fal:P
Vx(B'((2);, x) & C'((2), x)). Solet h = (i,j) and let 4’(a, x) be a prime
formula such that A'(x, x) ~ B'((¢);, x) & C'(()o, x) [FIM. *14.1,
*D, *E.

Case2. Ais Bv C. Then 4 ~ Bv C ~ 3o/Vx B'(a, x) v 3y'Vx C'(7, x)
~ Jo [(x e C7 & VxB'(a, x)) v IY'VxC'(y, x)] [*90] ~ o/ [Vx B (2, x)
v 3y'Vx C’(y, x)] [=: by cases prior to 3-elim., using Lemma 5 in second
case] ~ Jo’/3y" [VxB'(a, x) v VxC'(y, x)] [similarly] ~ Jo/3y'3z[(z = 0
> VxB'(a, x)) & (z # 0 > VxC'(y, x))] [c: by cases (z = 0,z # 0)] ~
Jo/3y'3zVx[(z = 0 o B'(x, x)) & (z # 0 = C'(y, x))] [*95, *87] ~
3004 9Yx [((1);(0) = 0 5 B'((@)o,1» ¥)) & (@)s(0) # 0 > C"(@)o.o»
x))1. Let & = (i,,0) and again find A'(«, x) by FIM *14.1, *D, *E, etc.

Case3. Ais B> C. Then A ~ B> C ~ 3/VxB'(z, x) o Iy'VxC’
(y, x) ~ Yo/ [VxB'(a, x) > Iy'VxC'(y, x)] [*95, *5] ~ " Va/V5Ve
[VtG(z, a, 6, ¢(2), 1) > (VxB'(a, x) o VyC’(3, y))] [axiom C, with
h=(i:j)] ~ 3"V VoV [VH(G(7, 0, 8, ¢(t), 1) & B'(, 1)) 2 Vy C'(3, )]
[*4, *5, *87, *95] ~ 3t*Vx S(z, x) for prime S [Lemma 9].

CaSE4. Ais1B. Then A ~ B o 1 = 0. Use Case 3.

CAsE 5. A is 3BB(B). Then A ~ IBB(B) ~ IBI'VxB'(B, o, x) ~
o O DYxB'((#)g (o)1 X)-

CASE 6. 4 is 3x B(x). Then 4 ~ 3xB(x) ~ IBB(B(0)). Use Case 5.

Case 7. AisVBB(B). Then A ~ VBIa/Vx B'(B, a, x) ~ ItV OVBVYsVe
[VtG(z, B, 8, ¢(¢), 1)) = VxB'(B, 8, x)] [axiom C] ~ It*VxS(z, x) for
prime S [Lemma 9, with j = 0].

CasE 8: A is VxB(x). Then 4 ~ VxB(x) ~ YaB(x(0)). Use Case 7.
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