Asymptotic Vassiliev invariants for vector fields
[Invariants de Vassiliev asymptotiques des champs de vecteurs]
Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 4, pp. 569-582.

Nous analysons le comportement asymptotique des invariants de Vassiliev des orbites non périodiques d’un champ de vecteurs ergodique dans un domaine de 3. Nous montrons que ce comportement est gouverné par l’hélicité du champ de vecteurs.

We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of 3. More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field.

DOI : 10.24033/bsmf.2637
Classification : 57M27, 37A05
Keywords: Vassiliev invariants, helicity, Gauss diagram
Mot clés : invariants de Vassiliev, hélicité, diagramme de Gauss
@article{BSMF_2012__140_4_569_0,
     author = {Baader, Sebastian and March\'e, Julien},
     title = {Asymptotic {Vassiliev} invariants for vector fields},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {569--582},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {140},
     number = {4},
     year = {2012},
     doi = {10.24033/bsmf.2637},
     mrnumber = {3059851},
     zbl = {1278.57017},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2637/}
}
TY  - JOUR
AU  - Baader, Sebastian
AU  - Marché, Julien
TI  - Asymptotic Vassiliev invariants for vector fields
JO  - Bulletin de la Société Mathématique de France
PY  - 2012
SP  - 569
EP  - 582
VL  - 140
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2637/
DO  - 10.24033/bsmf.2637
LA  - en
ID  - BSMF_2012__140_4_569_0
ER  - 
%0 Journal Article
%A Baader, Sebastian
%A Marché, Julien
%T Asymptotic Vassiliev invariants for vector fields
%J Bulletin de la Société Mathématique de France
%D 2012
%P 569-582
%V 140
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2637/
%R 10.24033/bsmf.2637
%G en
%F BSMF_2012__140_4_569_0
Baader, Sebastian; Marché, Julien. Asymptotic Vassiliev invariants for vector fields. Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 4, pp. 569-582. doi : 10.24033/bsmf.2637. https://www.numdam.org/articles/10.24033/bsmf.2637/

[1] V. I. Arnold & B. A. Khesin - Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, 1998. | MR | Zbl

[2] S. Baader - « Asymptotic link invariants for ergodic vector fields », preprint arXiv:math.GT/0803.0898.

[3] J.-M. Gambaudo & É. Ghys - « Signature asymptotique d'un champ de vecteurs en dimension 3 », Duke Math. J. 106 (2001), p. 41-79. | MR | Zbl

[4] S. Garoufalidis & A. Kricker - « A rational noncommutative invariant of boundary links », Geom. Topol. 8 (2004), p. 115-204. | MR | Zbl

[5] M. Goussarov, M. Polyak & O. Viro - « Finite-type invariants of classical and virtual knots », Topology 39 (2000), p. 1045-1068. | MR | Zbl

[6] J. Marché - « A computation of the Kontsevich integral of torus knots », Algebr. Geom. Topol. 4 (2004), p. 1155-1175. | MR | Zbl

[7] M. Polyak & O. Viro - « Gauss diagram formulas for Vassiliev invariants », Int. Math. Res. Not. 1994 (1994), p. 445ff., approx. 8 pp. | MR | Zbl

[8] T. Vogel - « On the asymptotic linking number », Proc. Amer. Math. Soc. 131 (2003), p. 2289-2297. | MR | Zbl

  • Dehornoy, Pierre; Rechtman, Ana Vector Fields and Genus in Dimension 3, International Mathematics Research Notices, Volume 2022 (2022) no. 5, p. 3262 | DOI:10.1093/imrn/rnaa255
  • de-la-Cruz-Moreno, J.; García-Compeán, H.; López-González, E. Vassiliev invariants for flows via Chern–Simons perturbation theory, International Journal of Modern Physics A, Volume 36 (2021) no. 15, p. 2150089 | DOI:10.1142/s0217751x21500895
  • Machon, Thomas The Godbillon-Vey invariant as topological vorticity compression and obstruction to steady flow in ideal fluids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 476 (2020) no. 2239, p. 20190851 | DOI:10.1098/rspa.2019.0851
  • Akhmet’ev, P. M. Knot Invariants in Geodesic Flows, Proceedings of the Steklov Institute of Mathematics, Volume 308 (2020) no. 1, p. 42 | DOI:10.1134/s0081543820010046
  • Akhmet'ev, Petr Mikhailovich Инварианты узлов в геодезических потоках, Труды Математического института имени В. А. Стеклова, Volume 308 (2020), p. 50 | DOI:10.4213/tm4059
  • Rechtman, Ana; Dehornoy, Pierre The trunkenness of a volume-preserving vector field, Nonlinearity, Volume 30 (2017) no. 11, p. 4089 | DOI:10.1088/1361-6544/aa83a8
  • KOMENDARCZYK, R.; VOLIĆ, I. On volume-preserving vector fields and finite-type invariants of knots, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 3, p. 832 | DOI:10.1017/etds.2014.83
  • Enciso, Alberto; Peralta-Salas, Daniel; de Lizaur, Francisco Torres Helicity is the only integral invariant of volume-preserving transformations, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 8, p. 2035 | DOI:10.1073/pnas.1516213113
  • Dehornoy, Pierre Asymptotic invariants of 3-dimensional vector fields, Winter Braids Lecture Notes, Volume 2 (2016), p. 1 | DOI:10.5802/wbln.8
  • Dehornoy, Pierre Geodesic flow, left-handedness and templates, Algebraic Geometric Topology, Volume 15 (2015) no. 3, p. 1525 | DOI:10.2140/agt.2015.15.1525

Cité par 10 documents. Sources : Crossref