[Invariants de Vassiliev asymptotiques des champs de vecteurs]
Nous analysons le comportement asymptotique des invariants de Vassiliev des orbites non périodiques d’un champ de vecteurs ergodique dans un domaine de
We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of
Keywords: Vassiliev invariants, helicity, Gauss diagram
Mot clés : invariants de Vassiliev, hélicité, diagramme de Gauss
@article{BSMF_2012__140_4_569_0, author = {Baader, Sebastian and March\'e, Julien}, title = {Asymptotic {Vassiliev} invariants for vector fields}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {569--582}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {140}, number = {4}, year = {2012}, doi = {10.24033/bsmf.2637}, mrnumber = {3059851}, zbl = {1278.57017}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2637/} }
TY - JOUR AU - Baader, Sebastian AU - Marché, Julien TI - Asymptotic Vassiliev invariants for vector fields JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 569 EP - 582 VL - 140 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2637/ DO - 10.24033/bsmf.2637 LA - en ID - BSMF_2012__140_4_569_0 ER -
%0 Journal Article %A Baader, Sebastian %A Marché, Julien %T Asymptotic Vassiliev invariants for vector fields %J Bulletin de la Société Mathématique de France %D 2012 %P 569-582 %V 140 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2637/ %R 10.24033/bsmf.2637 %G en %F BSMF_2012__140_4_569_0
Baader, Sebastian; Marché, Julien. Asymptotic Vassiliev invariants for vector fields. Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 4, pp. 569-582. doi : 10.24033/bsmf.2637. https://www.numdam.org/articles/10.24033/bsmf.2637/
[1] Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, 1998. | MR | Zbl
& -[2] « Asymptotic link invariants for ergodic vector fields », preprint arXiv:math.GT/0803.0898.
-[3] « Signature asymptotique d'un champ de vecteurs en dimension 3 », Duke Math. J. 106 (2001), p. 41-79. | MR | Zbl
& -[4] « A rational noncommutative invariant of boundary links », Geom. Topol. 8 (2004), p. 115-204. | MR | Zbl
& -[5] « Finite-type invariants of classical and virtual knots », Topology 39 (2000), p. 1045-1068. | MR | Zbl
, & -[6] « A computation of the Kontsevich integral of torus knots », Algebr. Geom. Topol. 4 (2004), p. 1155-1175. | MR | Zbl
-[7] « Gauss diagram formulas for Vassiliev invariants », Int. Math. Res. Not. 1994 (1994), p. 445ff., approx. 8 pp. | MR | Zbl
& -[8] « On the asymptotic linking number », Proc. Amer. Math. Soc. 131 (2003), p. 2289-2297. | MR | Zbl
-- Vector Fields and Genus in Dimension 3, International Mathematics Research Notices, Volume 2022 (2022) no. 5, p. 3262 | DOI:10.1093/imrn/rnaa255
- Vassiliev invariants for flows via Chern–Simons perturbation theory, International Journal of Modern Physics A, Volume 36 (2021) no. 15, p. 2150089 | DOI:10.1142/s0217751x21500895
- The Godbillon-Vey invariant as topological vorticity compression and obstruction to steady flow in ideal fluids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 476 (2020) no. 2239, p. 20190851 | DOI:10.1098/rspa.2019.0851
- Knot Invariants in Geodesic Flows, Proceedings of the Steklov Institute of Mathematics, Volume 308 (2020) no. 1, p. 42 | DOI:10.1134/s0081543820010046
- Инварианты узлов в геодезических потоках, Труды Математического института имени В. А. Стеклова, Volume 308 (2020), p. 50 | DOI:10.4213/tm4059
- The trunkenness of a volume-preserving vector field, Nonlinearity, Volume 30 (2017) no. 11, p. 4089 | DOI:10.1088/1361-6544/aa83a8
- On volume-preserving vector fields and finite-type invariants of knots, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 3, p. 832 | DOI:10.1017/etds.2014.83
- Helicity is the only integral invariant of volume-preserving transformations, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 8, p. 2035 | DOI:10.1073/pnas.1516213113
- Asymptotic invariants of 3-dimensional vector fields, Winter Braids Lecture Notes, Volume 2 (2016), p. 1 | DOI:10.5802/wbln.8
- Geodesic flow, left-handedness and templates, Algebraic Geometric Topology, Volume 15 (2015) no. 3, p. 1525 | DOI:10.2140/agt.2015.15.1525
Cité par 10 documents. Sources : Crossref