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ASYMPTOTIC VASSILIEV INVARIANTS FOR VECTOR FIELDS

by Sebastian Baader & Julien Marché

Abstract. — We analyse the asymptotical growth of Vassiliev invariants on non-
periodic flow lines of ergodic vector fields on domains of R3. More precisely, we show
that the asymptotics of Vassiliev invariants is completely determined by the helicity
of the vector field.

Résumé (Invariants de Vassiliev asymptotiques des champs de vecteurs)
Nous analysons le comportement asymptotique des invariants de Vassiliev des or-

bites non périodiques d’un champ de vecteurs ergodique dans un domaine de R3. Nous
montrons que ce comportement est gouverné par l’hélicité du champ de vecteurs.

1. Introduction

A smooth vector field on a manifold defines a flow whose orbits may be closed
or not. If the manifold is a compact domain G ⊂ R3, we may ask about the
asymptotical growth of knot invariants on non-periodic orbits. A well-known
and classical example for this is the helicity of a vector field, which measures
how pairs of non-periodic orbits are asymptotically linked, in the average [1].
In order to make quantitative statements, we suppose that the flow of the
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570 S. BAADER & J. MARCHÉ

vector field X be measure-preserving and ergodic with respect to a probability
measure µ on G, further, that the singularities of X be isolated and that the
periodic orbits of X be not charged by the flow. For every non-periodic point
p ∈ G and T > 0 we define a set K(p, T ) ⊂ R3, as follows:

K(p, T ) = {φX(p, t)|t ∈ [0, T ]} ∪ [p, φX(p, T )],

where φX is the flow of X and [p, φX(p, T )] the geodesic segment in R3 joining
p and φX(p, T ). This set is actually a knot, i.e. an embedded circle, for almost
all p ∈ G, T > 0 ([3], [8]). Under the above hypotheses, Gambaudo and Ghys
proved the existence of an asymptotic signature invariant which is proportional
to the helicity of X [3]: for almost all p ∈ G the limit

σ(X) = lim
T→∞

1

T 2
σ(K(p, T )) ∈ R

exists and is independent of the starting point p ∈ G. Here σ denotes the
signature invariant of links. The asymptotic signature invariant determines the
asymptotical behaviour of a large class of concordance invariants [2]. In this
note we show that Vassiliev invariants are asymptotically determined by the
signature (hence also by the helicity).

Theorem 1. — Let v be a real-valued Vassiliev knot invariant of degree n.
There exists a constant αv ∈ R, such that for almost all p ∈ G the limit

lim
T→∞

1

T 2n
v(K(p, T )) ∈ R

exists and coincides with αvσ(X)n. The constant αv does not depend on the
vector field X.

Gambaudo and Ghys provided the first instance of this theorem since the
helicity can be defined as an asymptotical linking number, which is a Vassiliev
invariant of degree one (for links, however). The proof of Theorem 1 is based on
a asymptotical count of Gauss diagrams with respect to suitable diagrams of the
knots K(p, T ). We give a short summary of Gambaudo and Ghys’ construction
in Section 2. The proof of Theorem 1 is contained in Section 3.

Remark. — For reasons of simplicity, we restrict ourselves to the study of
asymptotical knots and their invariants, rather than links. The case of links
does not pose any additional difficulties.
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ASYMPTOTIC VASSILIEV INVARIANTS FOR VECTOR FIELDS 571

2. Asymptotic Diagrams

The main part of Gambaudo and Ghys’ work [3] consists in constructing good
diagrams for the knots K(p, T ). For this purpose, they cover the domain G,
away from the singularities of X, by a countable family of flow boxes { F i}i∈N.
Further, they define a projection π : R3 → R2 onto a plane which is well-
adapted to this family: for every ε > 0, there exists a finite subset C ⊂ N,
such that for almost all p ∈ G, T > 0 large enough, the diagram π(K(p, T )) is
regular and, up to an error ≤ εT 2, its crossings arise from pairs of overcrossing
flow boxes F i, F j , with i, j ∈ C . Moreover, at these finitely many overcrossing
spots the diagram looks like a rectangular grid, as sketched in Figure 1. We
will shortly see that the number of crossings of these grids grows like T 2.

Figure 1.

Let ni(p, T ) = π0( F i ∩ {φX(p, t)|t ∈ [0, T ]}) be the number of times the
flow line starting at p and ending at φX(p, T ) enters the flow box F i. Applying
Birkhoff’s ergodic theorem to the characteristic function of the flow box F i,
we immediately see that for almost all p ∈ G the limit

ni = lim
T→∞

1

T
ni(p, T ) > 0

exists (and is proportional to the volume of the flow box µ( F i)). Therefore the
number of crossings cij(p, T ) at an overcrossing spot of two flow boxes F i, F j
satisfies

(1) lim
T→∞

1

T 2
cij(p, T ) = ninj .

For later purposes, we choose a natural number N ∈ N and subdivide the
time interval [0, T ] into N sub-intervals I1, I2, . . . , IN of length T

N . Every index
k ∈ {1, 2, . . . , N} gives rise to a function ni,k(p, T ) = π0( F i∩{φX(p, t)|t ∈ Ik}).
Again, by Birkhoff’s theorem, we obtain

(2) lim
T→∞

1

T
ni,k(p, T ) =

ni
N
.

At last, for two flow box indices i1, i2 ∈ C , and k1, k2 ∈ {1, 2, . . . , N}, we define
the number of crossings ci1,k1,i2,k2

(p, T ) between F i1 ∩ {φX(p, t)|t ∈ Ik1
}) and
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572 S. BAADER & J. MARCHÉ

F i2 ∩ {φX(p, t)|t ∈ Ik2}) at an overcrossing spot of the flow boxes F i1 , F i2 .
Equation (2) implies

(3) lim
T→∞

1

T 2
ci1,k1,i2,k2

(p, T ) =
ni1ni2
N2

This equality will play an important role in the proof of Theorem 1.

3. Gauss Diagram Formulae and Proof of Theorem 1

A Gauss diagram is nothing but a special notation for a knot diagram. It
consists of an oriented circle with a finite number of signed arrows connecting
pairs of points on the circle. The circle stands for the oriented knot itself,
while the arrows encode crossing points of the knot diagram, pointing from the
lower to the upper strand. Their signs indicate the signs of their crossings. For
example, Figure 2 shows a Gauss diagram representing the standard diagram of
the twist knot with six crossings. Here the orientation of the circle is understood
to be clockwise.

+

−

−

−

−

+

Figure 2.

It is often convenient to consider pointed Gauss diagram, i.e. Gauss diagrams
with a distinguished base point on its circle. Throughout this section, we will
work with pointed Gauss diagram. In particular, we will be concerned with
the pointed Gauss diagrams G(p, T ) arising from Gambaudo and Ghys’ special
diagrams D(p, T ) = π(K(p, T )).

Gauss diagrams are of special interest in the theory of Vassiliev invariants,
since the latter can be identified with certain formal linear combinations of
Gauss diagrams. In order to explain this, we have to introduce a pairing between
Gaus diagrams. Let Γ, G be two Gauss diagrams. The expression

〈Γ, G〉

is defined as the weighted number of sub-diagrams of G isomorphic to Γ, re-
specting the circles, base points and all orientations. The weights are simply
the products over all signs of arrows of the corresponding subgraphs and Γ.
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The above pairing evidently extends to a bilinear form on formal linear com-
binations of Gauss diagrams with real coefficients. A well-known theorem by
Goussarov, Polyak and Viro [5] says that every real-valued Vassiliev invariant v
of order n can be represented by a finite linear combination of Gauss diagrams
a1Γ1 + · · ·+amΓm with at most n arrows: for every knot K, for every Gauss di-
agram G representing K, the value v(K) coincides with 〈a1Γ1 +· · ·+amΓm, G〉.
However, not every linear combination of Gauss diagram gives rise to a knot
invariant.

Examples. —
1. The pairing with the sum of the two Gauss diagrams with one arrow

does not define a knot invariant since it computes the writhe of a diagram.

2. The Casson invariant can be defined as the pairing with the diagram

[7].

The representation of Vassiliev invariants by linear combinations of Gauss
diagrams allows us to reduce the proof of Theorem 1 to the following combi-
natorial statement.

Lemma 1. — Let Γ be a Gauss diagram with n arrows. There exists a constant
αΓ ∈ R, depending only on Γ, such that for almost all p ∈ G the limit

lim
T→∞

1

T 2n
〈Γ, G(p, T )〉

exists and coincides with αΓσ(X)n.

Remark. — It is tempting to replace 〈Γ, G(p, T )〉 by 〈Γ,K(p, T )〉 in the above
statement. This makes no sense unless the pairing with Γ defines a knot invari-
ant. Nevertheless, Theorem 1 is an immediate consequence of Lemma 1, by the
theorem of Goussarov, Polyak and Viro.

Proof of Lemma 1. — Every occurence of Γ in the diagram G(p, T ) corre-
sponds to a collection of n crossings involving 2n strands whose order is pre-
scribed by Γ. We start by observing that only the crossings arising from over-
crossing flow boxes F i, F j , with i, j ∈ C , produce an essential contribution to
〈Γ, G(p, T )〉. Indeed, the total number of n-tuples of crossings of D(p, T ) grows
like T 2n, by equation (1). If we restrict ourselves to n-tuples with at least one
‘exceptional’ crossing, then this number is estimated by a constant multiple of
εT 2n.

Let us now choose a natural number N ∈ N and subdivide the interval [0, T ]

into N sub-intervals I1, . . . , IN , as in Section 2. Every n-tuple of crossings
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(c1, . . . , cn) of D(p, T ) defines 2n times t1, . . . , t2n ∈ [0, T ], with the convention
that t2k−1, resp. t2k, denote the first, resp. second, time of occurence at the
crossing ck (k ∈ {1, . . . , n}), starting at t = 0. The order of the tl’s tells
us whether the n-tuple contributes to 〈Γ, G(p, T )〉 or not. We would like to
reduce our count to n-tuples with sufficiently distinct times, i.e. such that
every interval Ij contains at most one tk (this naturally forces N ≥ 2n). Let us
fix two flow box indices i1, i2 ∈ C and determine ci1,j,i2,j(p, T ), the number of
(single) crossings between F i1 , F i2 for which both times belong to the same
interval Ij , j ∈ {1, . . . N}. By equation (3), this number grows like ni1

ni2

N2 T 2.
Since there are N intervals Ij , we have to sum up the ci1,j,i2,j(p, T ) over j
and conclude that the number of single crossings between F i1 , F i2 for which
both times belong to the same interval grows like ni1

ni2

N T 2. Choosing N large
enough, we see that these crossings do not produce an essential contribution to
〈Γ, G(p, T )〉, either.

It remains to count n-tuples c = (c1, . . . , cn) of crossings where all tl’s belong
to different intervals Ij , whose order is prescribed by Γ. These n-tuples come
together with injective maps fc : {1, 2, . . . 2n} → {1, 2, . . . N} satisfying tl ∈
Ifc(l). Let us fix such a map f which is compatible with the Gauss diagram Γ,
meaning that the obvious Gauss diagram associated with f coincides with Γ.
Moreover, let us fix n not necessarily distinct spots X1, . . . , Xn of overcrossing
flow boxes. We denote by ik, jk ∈ C the indices of the two flow boxes that cross
at Xk. Using equation (3) again, we see that the number of n-tuples c with
prescribed function fc and ck ∈ Xk grows like

n∏
k=1

niknjk
N2

T 2.

Summing over all injective maps f compatible with Γ and over all collections
of spots Xk (finitely many in number), we obtain an expression that grows
like T 2n. However, this is not quite 〈Γ, G(p, T )〉, since we have been neglecting
signs so far. This will finally lead us to the desired relation with the asymptotic
signature.

We observe that all crossings of the grid at a spot Xk share the same sign εk.
Taking these into account, we obtain the following expression for the asymp-
totical growth of 〈Γ, G(p, T )〉:

(4)
∑
f

∑
{Xk}

n∏
k=1

εkniknjk
T 2

N2
,

where the first sum is taken over all injective maps f compatible with Γ and the
second one over all collections of spots Xk. The inner sum is easily recognizable
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as (∑
Xk

εkniknjk
T 2

N2

)n
,

where the sum is now taken over all single spots Xk. For large N ∈ N, the
proportion of injective maps f : {1, 2, . . . 2n} → {1, 2, . . . N} compatible with
Γ gets close to a constant αΓ, i.e. their number grows like αΓN

2n. The expres-
sion (4) therefore simplifies to

αΓ

(∑
Xk

εkniknjkT
2

)n
.

The sum between brackets is nothing but the asymptotical writhe of the dia-
gram D(p, T ), which converges to one half times the asymptotical signature of
K(p, T ), by Gambaudo and Ghys [3].

4. Asymptotic Kontsevich integral

4.1. Reduction to torus knots. — Let X be a vector field in a bounded domain of
R3 as in the settings of the Theorem 1 and denote by σ its asymptotic signature
invariant. Then, for any finite type invariant v of degree n, the constant αv
describes the asymptotics of v(K(p, T )) for T going to infinity. Precisely, we
denote by αn(v) the limit of v(K(p,T ))

T 2nσn where σ is supposed to be non zero.
The correspondence v 7→ αn(v) is linear and if v happens to have a degree

less than n, then αn(v) = 0. We conclude that αn is a linear form on the n-th
graded space of Vassiliev invariants which itself is dual to the linear space of
n-chords diagrams An(S1). Hence, αn belongs to An(S1) and our purpose in
this section is to compute α =

∑
n αn ∈ A(S1).

The trick is to reduce the computation to torus knots, thanks to the following
lemma. Denote by T (p, q) the torus knot with parameters p and q.

Lemma 2. — Let λ be an irrational number in [0, 1]. Then, there exists two
sequences pk, qk of coprime integers going to infinity such that qk/pk converges
to λ and v(T (pk, qk))/pk

2n converges to αn(v)λn.

Proof. — Consider the square [0, 1] × [0, 1] and identify two sides with the
rule (x, 0) = (x + λ mod 1, 1). Then it is well known that the vector field
(0, 1) defines an ergodic flow on this space. Cut the square along the segment
{1 − λ} × [1/2, 1] and embed this template as in the Figure 3. The proof of
the Theorem 1 implies that for almost all starting points p in the template,
v(K(p, T ))/T 2n converges to αn(v)λn. Let p = (x0, y0) be such a starting point:
for all integers k, φ(p, k) = (xk, y0) where xk = x0 + kλ mod 1. We define a
sequence of times tk for which the flow goes very close to the starting point.
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576 S. BAADER & J. MARCHÉ

In formulas, set t0 = 0 and tk+1 = inf{k > tk, x0 < xk < inf{xl, 0 < l < k}}.
Denote by Kk the knot obtained by closing the orbit of p during a time tk
with the segment [x0, xtk ] × {y0}. This knot may be drawn on a torus and

Figure 3.

hits the meridian tk times. The number of times this knot hits the parallel is
qk = #{k, xk < λ}. This number is equivalent to λtk. The pair of sequences
pk = tk and qk satisfy the assumptions of the lemma.

As an easy application, one can give formulas for the asymptotic Alexander
polynomial and Jones polynomial.

Proposition 1. — Let X be a vector field as in the Theorem 1 with asymp-
totic signature invariant σ.

Set ∆̃ = ∆(eh) ∈ Q[[h]] where ∆ is the Alexander polynomial normalized
such that it is a Laurent symmetric polynomial.

lim
T→∞

∆̃K(p,T )(h/T
2) =

sinh(σh)

σh

Set J̃ = J(eh) ∈ Q[[h]] where J is the Jones polynomial normalized such
that it takes the value 1 at the trivial knot.

lim
T→∞

J̃K(p,T )(h/T
2) = −hσeσh

Proof. — Its an easy application of the Lemma 2 using the formulas
∆T (p,q)(t) = t−(p−1)(q−1)/2 (tpq−1)(t−1)

(tp−1)(tq−1) and

JK(p,q)(t) =
t(p−1)(q−1)/2(1− tp+1 − tq+1 + tp+q)

1− t2
.
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4.2. The Kontsevich integral of torus knots and its limit. — Let A be the space
of formal series of trivalent diagrams lying on S1 up to the usual (AS) and
(IHX) relations. The Kontsevich integral Z(K) of a knot K takes values in A.
It happens to be easier to work with a space of formal series of uni-trivalent
diagrams modulo the same relations denoted by B. We define the degree of a
diagram as half the total number of vertices and the product of two diagrams
as their disjoint union.

The wheeling map Υ : B → A is a well-known isomorphism of algebras
between these two spaces. We will denote by Z☼(K) the series Υ−1Z(K) ∈ B:
we will need a closed expression for Z☼(T (p, q)) for relatively prime integers p
and q.

Let us start with equation (2) in [6]:

(5) Z☼T (p, q) = ∂−1
Ω

(
qΩ · Ωp exp(

pq

2
_)
) exp(−pq2 _ +pq

48Θ)

〈Ω,Ω〉
.

In this formula,_ is the diagram of B consisting of a single edge, Θ is the theta
graph and Ω is a series of diagrams to be defined later. Given two diagrams A
and B one defines the following operations:

1. 〈A,B〉 is the sum of all diagrams obtained by gluing all univalent vertices
of A with all univalent vertices of B.

2. ∂AB is the sum of all diagrams obtained by gluing all univalent vertices
of A with some univalent vertices of B.

3. A·B is the sum of all diagrams obtained by gluing some univalent vertices
of A with some univalent vertices of B.

4. qA ·Bp is the same sum as before except that each term is multiplied by
qapb where a and b are the numbers of remaining univalent vertices of A
and B respectively.

Given a series f(h) ∈ R[[h]] we define the wheel series Wh(f(h)) ∈ B by
associating to each monomial hn a circle with n legs attached to it: for instance
one has Wh(h8) = ☼. These series of diagrams play a central role: if we de-
fine Ω = exp(Wh(F (h))) where F (h) = 1

2 log sinh(h/2)
h/2 , we have for instance

Z☼(U) = Ω/〈Ω,Ω〉 where U is the unknot.

Proposition 2. — Let X be a vector field as in Theorem 1 with asymptotic
signature invariant σ. Given α ∈ R and D ∈ B we define αdegD as αnD where
n is the degree of D. Then, the following formula holds:

lim
T→∞

T−2 degZ☼K(p, T ) = (2σ)deg∂−1
Ω

Å
exp(

1

2
_)

ã
exp(−1

2
_ +

Θ

48
).
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Proof. — Thanks to Lemma 2, it is sufficient to consider the limit of Z☼T (p, q)

for p and q going to infinity at the same rate. The corresponding asymptotic
signature will be equal to 1/2. Thanks to Theorem 1, we recover the general
formula by applying the operator (2σ)deg.

Consider formally the expression p−2 degZ☼T (p, p) in Equation (5). The ex-
pression p−2 deg〈Ω,Ω〉 goes to 1 as any non empty diagram in 〈Ω,Ω〉 is divided
by a positive power of p.

As p−2 deg commutes with addition and multiplication in B, one has
p−2 deg exp(−p

2

2 _ +p2

2 Θ) = exp(− 1
2 _ + Θ

48 ).
Remark that ∂−1

Ω = ∂Ω−1 and Ω−1 = exp(−Wh(F (h))). Consider now a term
of the expression p−2 deg∂Ω−1

Ä
pΩ · Ωp exp(p

2

2 _)
ä
. It is a diagram D obtained

by gluing wheels coming from Ω−1, pΩ and Ωp. Let us denote by z, x, y these
three distinct types of wheels appearing in D. The diagram D is multiplied by
a factor p2nz+nx+ny where nz is the number of edges which are attached only
to wheels of type z. The number nx (resp. ny) denote the number of edges
attached to wheels of type x (resp. of type y) which are not attached to wheels
of type y (resp. of type x).

We remark that the degree of D is equal to the total number of edges at-
tached to the wheels. Hence, p−2 degD has a negative power of p unless there
are no wheels of type x and y. When p goes to infinity, only gluings between
Ω−1 and exp(p

2

2 _) remain and one otains the formula of the proposition.

Appendix A

The tree expansion of the Kontsevich integral

A.1. Gluing graphs and their substitutions. — Let X be a finite set. We denote
by S(X) the vector space generated by isomorphism classes of finite graphs
with vertices labeled by X and cyclic orientation of the edges around vertices.
We complete S(X) with respect to the degree which counts edges and vertices.

Given Γ ∈ S(X) and f(·, h) : X → R[[h]], we define Sub(Γ, f) in the follow-
ing way: replace a vertex of Γ labeled with x by the wheel series Wh(f(x, h))

(using multilinearity), then sum over all possible gluings (respecting cyclic ori-
entations) of the edges of Γ to univalent vertices of wheels located at the cor-
responding vertices. As a simple example, one has Sub(exp(•), F (h)) = Ω.

We can interpret the Formula (5) in terms of substitution of gluing graphs.
Set X = {x, y, z} and denote by G the following element of S(X).

G =
∑
[Γ]

(pq)−|E(Γ)|

|Aut(Γ)|
Γ.
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The notation [Γ] means that we sum over isomorphism classes of graphs Γ which
do not have edges between two vertices labeled by x or two vertices labeled by
y.

Set f(x, h) = F (ph), f(y, h) = F (qh) and F (z) = −F (pqh). Then, the
definition of G is designed to verify the following formula, taking care of the
factors of p and q as in the proof of Proposition 2.

(6) Sub(G, f) = ∂−1
Ω

(
qΩ · Ωp exp(

pq

2
_)
)

exp(−pq
2
_).

Let us recall the notion of Π-diagram from [6]. Let C be the category whose
objects are free abelian groups of finite rank and morphisms are linear isomor-
phisms. If Π is a functor from C to real vector spaces, we define D(Π) as a
quotient of

⊕
[Γ] Π(H1(Γ,Z)) by generalized (AS) and (IHX) relations. In this

direct sum, Γ runs over trivalent diagrams.
As an example, if Π(H) =

∏
n S

n(H ⊗ R) then there is an isomorphism
between B and D(Π). Through this isomorphism, a leg is replaced by the co-
homology class of the edge to which it is attached. Setting Πs(H) = Π(H)[(H⊗
R \ {0})−1] one defines a space of singular diagrams where non-trivial legs be-
come invertible. We denote this space by Bs.

The interest of this space of diagrams comes from the Proposition 3.1 of [6]
that we recall without proof, though in a more explicit form:

Proposition 3. — Let Γ be a graph in S(X) and f(·, h) : X → R[[h]] a
decoration of X by formal series. Denote by Γ◦ the trivalent diagram obtained
from Γ by gluing all edges incoming to a same vertex to a circle in the order
given by the cyclic orientation of Γ.

For each vertex v of Γ, we denote by kv the valency of v. Consider the edges of
the circle lying at v as cohomology classes in H1(Γ◦,Z). We introduce variables
y1
v , . . . , y

pv
v to parametrize the pv distinct classes occuring with multiplicities

m1
v, . . . ,m

pv
v . Then, the following formula holds:

Sub(Γ, f) =
∏
v

pv∑
lv=1

∂kv−pv

∂
m1

v−1

y1
v

· · · ∂m
pv
v −1

ypv
v

Ö
f ′(v, ylvv )

∏pv

jv=1
(yjv

v )m
jv
v −1

(mjv
v −1)!

(ylvv )kv−pv
∏
jv 6=lv (ylvv − yjvv )

è
Let us summarize what is important in this formula:

- there is a finite number of terms,
- the formula depends on f ′ instead of f ,
- all terms have non trivial denominator except if pv = 1 for all v. This
occurs if and only if Γ is a tree.
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A.2. Rationality. — Let Πrat(H) = R[exp(H)]loc where we localize expressions
of the form P1(eh1) · · ·Pk(ehk) for non-zero polynomials P1, . . . Pk and non-
zero cohomology classes h1, . . . , hk. Call Brat = D(Πrat). The Taylor expansion
Πrat(H)→ Π(H) induces a map Hair : Brat → Bs and Garoufalidis and Kricker
(see [4]) showed that for every knot K, there exists a series Z☼

rat(K) ∈ Brat such
that

Z☼(K) =
1

〈Ω,Ω〉
exp

Å
Wh(F (h)− 1

2
log ∆̃(h))

ã
HairZ☼

rat(K).

Let us ignore from now all wheel diagrams as they are well understood and
are not in the image of the Hair map. We will denote this part by Z☼

>1 as all
non-wheel diagram have first Betti number greater than 1.

Recall that one has Z☼T (p, q) =
exp( pqΘ

48 )

〈Ω,Ω〉 Sub(G, f). The derivative of F (h)

is 1
4
eh+1
eh−1

− 1
2h which is a mixture of rational function in eh and Laurent poly-

nomial in h. In the substitution of G with f will appear a more complicated
mixture which at the end, happens to be rational, that is, belongs to the image
of the Hair map. The point is that we can identify from the beginning which
terms can be rational.

Consider Πm(H) the subalgebra of Πs(H) generated by Πrat(H) and Laurent
polynomials in H. This subalgebra is stable by derivation and Proposition 3
shows that the Kontsevich integral Z☼

>1T (p, q) belongs to D(Πm) (except for
the wheel part). The degree of a Laurent polynomial in H extends to a well-
defined degree on Πm(H) and on D(Πm) by functoriality. The rationality of
the Kontsevich integral of torus knots shows that Z☼

>1T (p, q) belongs to the
degree 0 part.

Analyzing Proposition 3, one sees that the degree 0 part is obtained as
follows. Set F+(h) = 1

2 log sinh(h/2): it is not a Laurent power series but
its derivative is. Setting f+(x, h) = F+(ph), f+(y, h) = F+(qh), f+(z) =

−F+(pqh), the formula of Proposition 3 allows us to make sense of Sub(G, f+).
Then Sub(Gt, f+) is the degree 0 contribution to Z☼T (p, q) where Gt is the
tree part of G. We deduce the following formula:

Proposition 4 (The rational expression of the Kontsevich integral of torus
knots)

(7) Z☼
>1T (p, q) =

exp(pqΘ48 )

〈Ω,Ω〉
∑

[Γ,tree]

(pq)−|E(Γ)|

|Aut(Γ)|
Sub(Γ, f+).

where Γ is a tree in S({x, y, z}) without edges connecting two vertices of type
x or two vertices of type y.
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A.3. Tree expansion of the asymptotic Kontsevich Integral. — Let Γ be a tree in
S(X) and for any vertex v of Γ, denote by yv the cohomology class in H1(Γ◦,Z)

of any edge of the circle inserted at v. Using Proposition 3, one obtains the
following formula: Sub(Γ, f+) =

∏
v

1
(kv−1)!

∂kv f+(v,yv)

∂ykv
v

Take formally p = q in the Formula (7) and apply the operator p−2 deg.
Denote by F+(n) the n-th derivative of F+. Then, the following formula holds:

p−2 degZ☼
>1T (p, p) =

exp(Θ/48)

p−2 deg〈Ω,Ω〉
∑

[Γ,tree]

p−4|E(Γ)|

|Aut(Γ)|

∏
v type z

(−p2)kvF+(kv)(yv)

(kv − 1)!

∏
v type x,y

pkvF+(kv)(yv

p )

(kv − 1)!
.

Using the equation
∑
v kv = 2|E(Γ)|, the estimate F+(n)(h) = (−1)n−1(n−1)!

2hn +

O(1) and letting p go to infinity, one obtains the last proposition.

Proposition 5. — The asymptotic Kontsevich integral may be computed with
the following formula:

lim
p→∞

p−2 degZ☼
>1T (p, p) =

exp(Θ/48)
∑

[Γ,tree]

1

|Aut(Γ)|
∏

v type z

F+(kv)(yv)

(kv − 1)!

∏
v type x,y

−1

2ykv
v

.

where Γ is a tree in S({x, y, z}) without edges connecting two vertices of type
x or two vertices of type y.
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