Random walks in (+)2 with non-zero drift absorbed at the axes
[Marches aléatoires dans +2 avec un drift non nul, absorbées au bord]
Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 3, pp. 341-387.

Dans cet article, nous étudions les marches aléatoires du quart de plan ayant des sauts à distance au plus un, avec un drift non nul à l'intérieur et absorbées au bord. Nous obtenons de façon explicite les séries génératrices des probabilités d'absorption au bord, puis leur asymptotique lorsque le site d'absorption tend vers l'infini. Nous calculons également l'asymptotique des fonctions de Green le long de toutes les trajectoires, en particulier selon celles tangentes aux axes.

Spatially homogeneous random walks in (+)2 with non-zero jump probabilities at distance at most 1, with non-zero drift in the interior of the quadrant and absorbed when reaching the axes are studied. Absorption probabilities generating functions are obtained and the asymptotic of absorption probabilities along the axes is made explicit. The asymptotic of the Green functions is computed along all different infinite paths of states, in particular along those approaching the axes.

DOI : 10.24033/bsmf.2611
Classification : 60G50, 60G40, 30E20, 30F10
Keywords: random walk, Green functions, absorption probabilities, singularities of complex functions, holomorphic continuation, steepest descent method
Mot clés : marche aléatoire, fonctions de Green, probabilités d'absorption, singularités de fonctions complexes, prolongement analytique, méthode de la plus grande descente
@article{BSMF_2011__139_3_341_0,
     author = {Kurkova, Irina and Raschel, Kilian},
     title = {Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {341--387},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {139},
     number = {3},
     year = {2011},
     doi = {10.24033/bsmf.2611},
     mrnumber = {2869310},
     zbl = {1243.60042},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2611/}
}
TY  - JOUR
AU  - Kurkova, Irina
AU  - Raschel, Kilian
TI  - Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes
JO  - Bulletin de la Société Mathématique de France
PY  - 2011
SP  - 341
EP  - 387
VL  - 139
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2611/
DO  - 10.24033/bsmf.2611
LA  - en
ID  - BSMF_2011__139_3_341_0
ER  - 
%0 Journal Article
%A Kurkova, Irina
%A Raschel, Kilian
%T Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes
%J Bulletin de la Société Mathématique de France
%D 2011
%P 341-387
%V 139
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2611/
%R 10.24033/bsmf.2611
%G en
%F BSMF_2011__139_3_341_0
Kurkova, Irina; Raschel, Kilian. Random walks in $(\mathbb {Z}_{+})^{2}$ with non-zero drift absorbed at the axes. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 3, pp. 341-387. doi : 10.24033/bsmf.2611. http://www.numdam.org/articles/10.24033/bsmf.2611/

[1] P. Biane - « Quantum random walk on the dual of SU(n) », Probab. Theory Related Fields 89 (1991), p. 117-129. | MR | Zbl

[2] -, « Frontière de Martin du dual de SU(2) », in Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, 1992, p. 225-233. | Numdam | Zbl

[3] -, « Minuscule weights and random walks on lattices », in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, p. 51-65. | MR | Zbl

[4] M. Bousquet-Mélou & M. Mishna - « Walks with small steps in the quarter plane », in Algorithmic probability and combinatorics, Contemp. Math., vol. 520, Amer. Math. Soc., 2010, p. 1-39. | MR | Zbl

[5] M.-F. Bru - « Wishart processes », J. Theoret. Probab. 4 (1991), p. 725-751. | MR | Zbl

[6] B. Chabat - Introduction à l'analyse complexe. Tome 1, Traduit du Russe: Mathématiques., “Mir”, 1990. | Zbl

[7] F. J. Dyson - « A Brownian-motion model for the eigenvalues of a random matrix », J. Mathematical Phys. 3 (1962), p. 1191-1198. | MR | Zbl

[8] P. Eichelsbacher & W. König - « Ordered random walks », Electron. J. Probab. 13 (2008), p. no. 46, 1307-1336. | EuDML | MR | Zbl

[9] G. Fayolle, R. Iasnogorodski & V. A. Malyshev - Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer, 1999. | MR | Zbl

[10] M. V. Fedoryuk - « Asymptotic methods in analysis », in Current problems of mathematics. Fundamental directions, Vol. 13 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1986, p. 93-210. | MR | Zbl

[11] D. J. Grabiner - « Brownian motion in a Weyl chamber, non-colliding particles, and random matrices », Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), p. 177-204. | EuDML | Numdam | MR | Zbl

[12] P.-L. Hennequin - « Processus de Markoff en cascade », Ann. Inst. H. Poincaré 18 (1963), p. 109-195. | EuDML | Numdam | MR | Zbl

[13] D. G. Hobson & W. Werner - « Non-colliding Brownian motions on the circle », Bull. London Math. Soc. 28 (1996), p. 643-650. | MR | Zbl

[14] I. Ignatiouk-Robert - « Martin boundary of a killed random walk on a half-space », J. Theoret. Probab. 21 (2008), p. 35-68. | MR | Zbl

[15] -, « Martin boundary of a reflected random walk on a half-space », Probab. Theory Related Fields 148 (2010), p. 197-245. | MR | Zbl

[16] I. Ignatiouk-Robert & C. Loree - « Martin boundary of a killed random walk on a quadrant », Ann. Probab. 38 (2010), p. 1106-1142. | MR | Zbl

[17] K. Johansson - « Shape fluctuations and random matrices », Comm. Math. Phys. 209 (2000), p. 437-476. | MR | Zbl

[18] -, « Non-intersecting paths, random tilings and random matrices », Probab. Theory Related Fields 123 (2002), p. 225-280. | MR | Zbl

[19] M. Katori & H. Tanemura - « Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems », J. Math. Phys. 45 (2004), p. 3058-3085. | MR | Zbl

[20] W. König & N. O'Connell - « Eigenvalues of the Laguerre process as non-colliding squared Bessel processes », Electron. Comm. Probab. 6 (2001), p. 107-114. | EuDML | MR | Zbl

[21] W. König, N. O'Connell & S. Roch - « Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles », Electron. J. Probab. 7 (2002), p. no. 5, 24 pp. | EuDML | MR | Zbl

[22] I. A. Kurkova & V. A. Malyshev - « Martin boundary and elliptic curves », Markov Process. Related Fields 4 (1998), p. 203-272. | MR | Zbl

[23] J. K. Lu - Boundary value problems for analytic functions, Series in Pure Mathematics, vol. 16, World Scientific Publishing Co. Inc., 1993. | MR | Zbl

[24] V. A. Malyshev - « An analytical method in the theory of two-dimensional positive random walks », Sib. Math. J. 13 (1972), p. 917-929. | Zbl

[25] -, « Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks », Sib. Math. J. 14 (1973), p. 109-118. | MR | Zbl

[26] N. O'Connell - « Conditioned random walks and the RSK correspondence », J. Phys. A 36 (2003), p. 3049-3066. | MR | Zbl

[27] -, « A path-transformation for random walks and the Robinson-Schensted correspondence », Trans. Amer. Math. Soc. 355 (2003), p. 3669-3697. | MR | Zbl

[28] -, « Random matrices, non-colliding processes and queues », in Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, 2003, p. 165-182. | Numdam | MR | Zbl

[29] N. O'Connell & M. Yor - « A representation for non-colliding random walks », Electron. Comm. Probab. 7 (2002), p. 1-12. | EuDML | MR | Zbl

[30] K. Raschel - « Random walks in the quarter plane absorbed at the boundary : Exact and asymptotic », preprint arXiv:0902.2785.

[31] G. Sansone & J. Gerretsen - Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff Publishing, Groningen, 1969. | MR | Zbl

  • Ignatiouk-Robert, Irina; Kurkova, Irina; Raschel, Kilian Reflected random walks and unstable Martin boundary, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 1, pp. 549-587 | DOI:10.1214/22-aihp1326 | Zbl:1536.31033
  • Ignatiouk-Robert, Irina Asymptotics of the Green function of killed random walks in a cone of Zd, Electronic Communications in Probability, Volume 29 (2024), p. 13 (Id/No 19) | DOI:10.1214/24-ecp587 | Zbl:7905736
  • Franceschi, Sandro; Kourkova, Irina; Petit, Maxence Asymptotics for the Green’s functions of a transient reflected Brownian motion in a wedge, Queueing Systems, Volume 108 (2024) no. 3-4, p. 321 | DOI:10.1007/s11134-024-09925-y
  • Viet Hung Hoang; Raschel, Kilian; Tarrago, Pierre Harmonic functions for singular quadrant walks, Indagationes Mathematicae. New Series, Volume 34 (2023) no. 5, pp. 936-972 | DOI:10.1016/j.indag.2023.06.002 | Zbl:1524.60090
  • Fomichov, Vladimir; Franceschi, Sandro; Ivanovs, Jevgenijs Probability of total domination for transient reflecting processes in a quadrant, Advances in Applied Probability, Volume 54 (2022) no. 4, pp. 1094-1138 | DOI:10.1017/apr.2022.2 | Zbl:1499.60146
  • Essifi, Rim; Mustapha, Sami Upper estimates for inhomogeneous random walks confined to the positive orthant, Electronic Communications in Probability, Volume 26 (2021), p. 14 (Id/No 49) | DOI:10.1214/21-ecp418 | Zbl:1493.60076
  • Ignatiouk-Robert, Irina Harmonic functions of random walks in a semigroup via ladder heights, Journal of Theoretical Probability, Volume 34 (2021) no. 1, pp. 34-80 | DOI:10.1007/s10959-019-00974-1 | Zbl:1466.60157
  • Franceschi, S. Green's functions with oblique Neumann boundary conditions in the quadrant, Journal of Theoretical Probability, Volume 34 (2021) no. 4, pp. 1775-1810 | DOI:10.1007/s10959-020-01043-8 | Zbl:1481.30026
  • Ernst, Philip A.; Franceschi, Sandro Asymptotic behavior of the occupancy density for obliquely reflected Brownian motion in a half-plane and Martin boundary, The Annals of Applied Probability, Volume 31 (2021) no. 6, pp. 2991-3016 | DOI:10.1214/21-aap1681 | Zbl:1482.60109
  • Mustapha, Sami; Sifi, Mohamed Discrete harmonic functions in Lipschitz domains, Electronic Communications in Probability, Volume 24 (2019), p. 15 (Id/No 58) | DOI:10.1214/19-ecp259 | Zbl:1422.60076
  • Alsmeyer, Gerold; Raschel, Kilian The extinction problem for a distylous plant population with sporophytic self-incompatibility, Journal of Mathematical Biology, Volume 78 (2019) no. 6, pp. 1841-1874 | DOI:10.1007/s00285-019-01328-5 | Zbl:1411.60105
  • Lumbroso, Jeremie; Mishna, Marni; Ponty, Yann Taming reluctant random walks in the positive quadrant, Random generation of combinatorial structures – GASCom 2016. Proceedings of the 10th GASCom conference, Centre IGESA, La Marana, Corsica, France, June 1 – June 4, 2016., Amsterdam: Elsevier, 2017, pp. 99-114 | DOI:10.1016/j.endm.2017.05.008 | Zbl:1426.60053
  • Franceschi, Sandro; Kourkova, Irina Asymptotic Expansion of Stationary Distribution for Reflected Brownian Motion in the Quarter Plane via Analytic Approach, Stochastic Systems, Volume 7 (2017) no. 1, p. 32 | DOI:10.1287/16-ssy218
  • Zhang, Geliang; Christensen, Hugh; Li, Guolong; Godsill, Simon A correction note for price dynamics in a Markovian limit order market, SIAM Journal on Financial Mathematics, Volume 7 (2016), pp. 152-158 | DOI:10.1137/16m1057437 | Zbl:1336.91044
  • Lecouvey, Cédric; Raschel, Kilian t-Martin boundary of killed random walks in the quadrant, Séminaire de probabilités XLVIII, Cham: Springer, 2016, pp. 305-323 | DOI:10.1007/978-3-319-44465-9_11 | Zbl:1367.60048
  • Sami, Mustapha; Bouaziz, Aymen; Sifi, Mohamed Discrete harmonic functions on an orthant in Zd, Electronic Communications in Probability, Volume 20 (2015) no. none | DOI:10.1214/ecp.v20-4249
  • Ben Salem, Néjib; Mustapha, Sami; Sifi, Mohamed Survival time of a heterogeneous random walk in a quadrant, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 352 (2014) no. 10, pp. 797-801 | DOI:10.1016/j.crma.2014.08.016 | Zbl:1318.60073
  • Guillemin, Fabrice; Knessl, Charles; van Leeuwaarden, Johan S. H. Erratum to: “Wireless three-hop networks with stealing. II: Exact solutions through boundary value problems”, Queueing Systems, Volume 78 (2014) no. 2, pp. 189-195 | DOI:10.1007/s11134-014-9418-6 | Zbl:1299.90098
  • Raschel, Kilian Random walks in the quarter plane, discrete harmonic functions and conformal mappings, Stochastic Processes and their Applications, Volume 124 (2014) no. 10, pp. 3147-3178 | DOI:10.1016/j.spa.2014.04.013 | Zbl:1300.60066
  • Duraj, Jetlir Random walks in cones: the case of nonzero drift, Stochastic Processes and their Applications, Volume 124 (2014) no. 4, pp. 1503-1518 | DOI:10.1016/j.spa.2013.12.003 | Zbl:1319.60088
  • van Leeuwaarden, Johan S. H.; Raschel, Kilian Random Walks Reaching Against all Odds the other Side of the Quarter Plane, Journal of Applied Probability, Volume 50 (2013) no. 01, p. 85 | DOI:10.1017/s0021900200013139
  • van Leeuwaarden, Johan S. H.; Raschel, Kilian Random walks reaching against all odds the other side of the quarter plane, Journal of Applied Probability, Volume 50 (2013) no. 1, pp. 85-102 | DOI:10.1239/jap/1363784426 | Zbl:1271.60059
  • Kurkova, Irina; Raschel, Kilian Passage time from four to two blocks of opinions in the voter model and walks in the quarter plane, Queueing Systems, Volume 74 (2013) no. 2-3, pp. 219-234 | DOI:10.1007/s11134-012-9333-7 | Zbl:1266.82040
  • Guillemin, Fabrice; Knessl, Charles; van Leeuwaarden, Johan S. H. Wireless three-hop networks with stealing. II: Exact solutions through boundary value problems, Queueing Systems, Volume 74 (2013) no. 2-3, pp. 235-272 | DOI:10.1007/s11134-012-9332-8 | Zbl:1266.90074
  • Lafitte-Godillon, Pauline; Raschel, Kilian; Tran, Viet Chi Extinction Probabilities for a Distylous Plant Population Modeled by an Inhomogeneous Random Walk on the Positive Quadrant, SIAM Journal on Applied Mathematics, Volume 73 (2013) no. 2, p. 700 | DOI:10.1137/120864258
  • Cont, Rama; de Larrard, Adrien Price Dynamics in a Markovian Limit Order Market, SIAM Journal on Financial Mathematics, Volume 4 (2013) no. 1, p. 1 | DOI:10.1137/110856605
  • Billiard, Sylvain; Tran, Viet Chi A general stochastic model for sporophytic self-incompatibility, Journal of Mathematical Biology, Volume 64 (2012) no. 1-2, pp. 163-210 | DOI:10.1007/s00285-011-0410-z | Zbl:1284.92106
  • Raschel, Kilian Counting walks in a quadrant: a unified approach via boundary value problems, Journal of the European Mathematical Society (JEMS), Volume 14 (2012) no. 3, pp. 749-777 | DOI:10.4171/jems/317 | Zbl:1238.05014
  • Cont, Rama; de Larrard, Adrien Price Dynamics in a Markovian Limit Order Market, SSRN Electronic Journal (2012) | DOI:10.2139/ssrn.1735338
  • Kurkova, Irina; Raschel, Kilian Explicit expression for the generating function counting Gessel's walks, Advances in Applied Mathematics, Volume 47 (2011) no. 3, pp. 414-433 | DOI:10.1016/j.aam.2010.11.004 | Zbl:1234.05027
  • Raschel, Kilian Green functions for killed random walks in the Weyl chamber of Sp(4), Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 47 (2011) no. 4, pp. 1001-1019 | DOI:10.1214/10-aihp405 | Zbl:1263.60043

Cité par 31 documents. Sources : Crossref, zbMATH