@article{SPS_2002__36__165_0, author = {O'Connell, Neil}, title = {Random matrices, non-colliding processes and queues}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {165--182}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971584}, zbl = {1041.15019}, language = {en}, url = {http://www.numdam.org/item/SPS_2002__36__165_0/} }
TY - JOUR AU - O'Connell, Neil TI - Random matrices, non-colliding processes and queues JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 165 EP - 182 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2002__36__165_0/ LA - en ID - SPS_2002__36__165_0 ER -
O'Connell, Neil. Random matrices, non-colliding processes and queues. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 165-182. http://www.numdam.org/item/SPS_2002__36__165_0/
[1] Asymptotic results on infinite tandem queueing networks. Probab. Theor. Rel. Fields 118, n. 3, p. 365-405, 2000. | MR | Zbl
, and .[2] Synchronization and Linearity : An Algebra for Discrete Event Systems. Wiley, 1992. | MR | Zbl
, , and .[3] Random vicious walks and random matrices. Comm. Pure Appl. Math. 53 (2000) 1385-1410. | MR | Zbl
.[4] On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), no. 4,1119-1178. | MR | Zbl
, and .[5] GUES and queues. Probab. Theor. Rel. Fields 119 (2001) 256-274. | MR | Zbl
.[6] Quelques propriétés du mouvement brownien dans un cone. Stoch. Proc. Appl. 53 (1994), no. 2, 233-240. | MR | Zbl
.[7] Théorème de Ney-Spitzer sur le dual de SU(2). Trans. Amer. Math. Soc. 345, no. 1 (1994) 179-194. | MR | Zbl
.[8] Paths in Weyl chambers and random matrices. Preprint. | MR
and .[9] Point Processes and Queues: Martingale Dynamics. Springer-Verlag, Berlin, 1981. | MR | Zbl
.[10] Markov Chains, Gibbs Fields, Monte-Carlo Simulation, and Queues. Texts in App. Maths., vol. 31. Springer, 1999. | MR | Zbl
.[11] The output of a queueing system. Operations Research 4 (1956), no. 6, 699-704. | MR
.[12] Exponential functionals of Lévy processes. In: Lévy Processes: Theory and Applications, eds. O. Barndorff-Nielsen, T. Mikosch and S. Resnick. Birkhäuser, 2001. | MR | Zbl
, and .[13] An identity in law involving reflecting Brownian motion, derived for generalized arc-sine laws for perturbed Brownian motions. Stoch. Proc. Appl. (1999) 323-334. | MR | Zbl
, and .[14] Diffusing particles with electrostatic repulsion. Probab. Th. Rel. Fields 107 (1997), no. 4, 429-449. | MR | Zbl
and .[15] On the queueing process of lanes. Internal report Philips Telecommunicatie Industrie, Hilversum (NL). October 2, 1956.
.[16] Directed polymers in a random medium. Physica A 163 (1990) 71-84. | MR
.[17] Some absolute continuity relationships for certain anticipative transformations of geometric Brownian motions. Pub. RIMS, Kyoto, vol. 37, no. 3, p295-326. | MR | Zbl
, and .[18] The law of geometric Brownian motion and its integral, revisited; application to conditional moments. To appear in the Proceedings of the First Bachelier Conference, Springer, 2001. | MR | Zbl
, and .[19] An affine property of the reciprocal Asian option process. Osaka Math J. 38 (2001) 17-20. | MR | Zbl
.[20] The integral of geometric Brownian motion Adv. Appl. Probab. 33(1), (2001) 223-241. | MR | Zbl
.[21] A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 (1962) 1191-1198. | MR | Zbl
.[22] Random walks and random permutations. Preprint, 1999. (XXX: math.CO/9907037) | MR
.[23] Large deviations of the sojourn time for queues in series. Ann. Oper. Res. 79:3-26, 1998. | MR | Zbl
.[24] Departures from many queues in series. Ann. Appl. Prob. 1 (1991), no. 4, 546-572. | MR | Zbl
and .[25] Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. IHP 35 (1999), no. 2, 177-204. | Numdam | MR | Zbl
.[26] Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102 (2001), nos. 5-6, 1085-1132. | MR | Zbl
, and .[27] Concentration results for a Brownian directed percolation problem. Preprint. | MR
, and .[28] Pitman's 2M - X theorem for skip-free random walks with Markovian increments. Elect. Commun. Probab., Vol. 6 (2001) Paper no. 7, pages 73-77. | MR | Zbl
, and .[29] On the quasireversibility of a multiclass Brownian service station. Ann. Probab. 18 (1990) 1249-1268. | MR | Zbl
and .[30] Non-colliding Brownian motion on the circle, Bull. Math. Soc. 28 (1996) 643-650. | MR | Zbl
and .[31] Shape fluctuations and random matrices. Commun. Math. Phys. 209 (2000) 437-476. | MR | Zbl
.[32] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. (2) 153 (2001), no. 1, 259-296. | MR | Zbl
.[33] On the distribution of the largest principal component. Ann. Stat. 29, No. 2 (2001). | MR | Zbl
.[34] Reversibility and Stochastic Networks. Wiley, 1979. | MR | Zbl
.[35] Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. Elect. Commun. Probab., to appear. | MR | Zbl
and .[36] Non-colliding random walks, tandem queues and the discrete ensembles. Elect. J. Probab., to appear. | MR | Zbl
, and .[37] A version of Pitman's 2M - X theorem for geometric Brownian motions. C.R. Acad. Sci. Paris 328 (1999), Série I, 1067-1074. | MR | Zbl
and .[38] A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration. Osaka Math J. 38 (2001) 1-16. | MR | Zbl
and .[39] Random Matrices: Second Edition. Academic Press, 1991. | MR | Zbl
.[40] Stochastic properties of waiting lines. Operations Research 3 (1955) 256. | MR
.[41] The reversibility property of production lines. Management Sci. 25, 152-158. | MR | Zbl
(1979).[42] On unbounded Brownian storage. Preprint.
and .[43] Some queueing problems. J. Soc. Indust. Appl. Math. 2 (1954) 134. | Zbl
.[44] Directed percolation and tandem queues. DIAS Technical Report DIAS-APG-9912.
.[45] Collision times and exit times from cones: a duality. Stochastic Process. Appl. 43 (1992), no. 2, 291-301. | MR | Zbl
and .[46] Brownian analogues of Burke's theorem. Stoch. Proc. Appl. 96 (2) (2001) pp. 285-304. | MR | Zbl
and .[47] A representation for non-colliding random walks. Elect. Commun. Probab., to appear. | MR | Zbl
and .[48] One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511-526. | MR | Zbl
.[49] Markov functions. Ann. Probab. 9 (1981) 573-582. | MR | Zbl
and .[50] Waiting times when queues are in tandem. Ann. Math. Statist. 28 (1957) 768-773. | MR | Zbl
.[51] Réseaux et files d'attente: méthodes probabilistes. Math. et Applications, vol. 35. Springer, 2000. | MR | Zbl
.[52] Hydrodynamic scaling, convex duality, and asymptotic shapes of growth models. Markov Proc. Rel. Fields 4, 1-26, 1998. | MR | Zbl
.[53] Asymptotic stationarity of queues in series and the heavy traffic approximation. Ann. Prob. 18, 1232-1248. | MR | Zbl
and (1990).[54] Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163 (1994), no. 1, 33-72. | MR | Zbl
and .[55] Path decomposition and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28 (1974), no. 3, 738-768. | MR | Zbl
.