[Théorème fondamental des espaces vectoriels préhomogènes modulo . Avec un appendice par F. Sato]
Soit un corps de nombres avec anneaux d’entiers ; nous prouvons un analogue, sur des anneaux finis de la forme , du théorème fondamental sur la transformation de Fourier de l’invariante relative d’un espace vectoriel préhomogène. Ici, est un idéal premier assez grand de et . Dans l’appendice, F. Sato donne une application des théorèmes 1.1, 1.3 et des théorèmes A, B, C de J.Denef et A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113 (1998), 237-346] à l’équation fonctionelle de -fonctions de type Dirichlet associées aux espaces vectorielles préhomogènes.
For a number field with ring of integers , we prove an analogue over finite rings of the form of the fundamental theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where is a big enough prime ideal of and . In the appendix, F.Sato gives an application of the Theorems 1.1, 1.3 and the Theorems A, B, C in J.Denef and A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113 (1998), 237-346] to the functional equation of -functions of Dirichlet type associated with prehomogeneous vector spaces.
Keywords: prehomogeneous vector spaces, $L$-functions, Bernstein-Sato polynomial, fundamental theorem of prehomogeneous vector spaces, exponential sums
Mot clés : espaces vectorielles préhomogènes, $L$-fonctions, polynôme de Bernstein-Sato, théorème fondamental des espaces vectorielles préhomogènes, sommes exponentielles
@article{BSMF_2007__135_4_475_0, author = {Cluckers, Raf and Herremans, Adriaan}, title = {The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ {(With} an appendix by {F.} {Sato)}}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {475--494}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {135}, number = {4}, year = {2007}, doi = {10.24033/bsmf.2543}, mrnumber = {2439196}, zbl = {1207.11118}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2543/} }
TY - JOUR AU - Cluckers, Raf AU - Herremans, Adriaan TI - The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato) JO - Bulletin de la Société Mathématique de France PY - 2007 SP - 475 EP - 494 VL - 135 IS - 4 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2543/ DO - 10.24033/bsmf.2543 LA - en ID - BSMF_2007__135_4_475_0 ER -
%0 Journal Article %A Cluckers, Raf %A Herremans, Adriaan %T The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato) %J Bulletin de la Société Mathématique de France %D 2007 %P 475-494 %V 135 %N 4 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2543/ %R 10.24033/bsmf.2543 %G en %F BSMF_2007__135_4_475_0
Cluckers, Raf; Herremans, Adriaan. The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato). Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 4, pp. 475-494. doi : 10.24033/bsmf.2543. http://www.numdam.org/articles/10.24033/bsmf.2543/
[1] Théorie des nombres, Traduit par Myriam et Jean-Luc Verley. Traduction faite d'après l'édition originale russe. Monographies Internationales de Mathématiques Modernes, No. 8, Gauthier-Villars, 1967. | MR | Zbl
& -[2] Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann, 1967. | MR | Zbl
-[3] « The Fundamental Theorem of prehomogeneous vector spaces modulo », main body of this article. | Numdam | Zbl
& -[4] « The adelic zeta function associated to the space of binary cubic forms. II. Local theory », J. reine angew. Math. 367 (1986), p. 27-75. | EuDML | MR | Zbl
& -[5] « Character sums associated to prehomogeneous vector spaces », Compositio Math. 113 (1998), p. 273-346. | MR | Zbl
& -[6] « Theory of prehomogeneous vector spaces without regularity condition », Publ. Res. Inst. Math. Sci. 27 (1991), p. 861-922. | MR | Zbl
-[7] J 106 (1984), p. 1013-1032. | MR | Zbl
[8] -, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, 2000. | MR | Zbl
[9] « Generalized character sums associated to regular prehomogeneous vector spaces », Geom. Funct. Anal. 10 (2000), p. 1487-1506. | MR | Zbl
& -[10] Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, vol. 51, Princeton University Press, 1963. | MR | Zbl
-[11] « A generalization of Gauss sums and its applications to Siegel modular forms and -functions associated with the vector space of quadratic forms », J. reine angew. Math. 416 (1991), p. 91-142. | MR | Zbl
-[12] -, « On -functions associated with the vector space of binary quadratic forms », Nagoya Math. J. 130 (1993), p. 149-176. | MR | Zbl
[13] -, « Convergence of the zeta functions of prehomogeneous vector spaces », Nagoya Math. J. 170 (2003), p. 1-31. | MR | Zbl
[14] « L-functions of prehomogeneous vector spaces », Appendix of this article.
-[15] -, « Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations », Tōhoku Math. J. (2) 34 (1982), p. 437-483. | MR | Zbl
[16] -, « On functional equations of zeta distributions », Adv. Stud. Pure Math. 15 (1989), p. 465-508. | MR | Zbl
[17] « Theory of prehomogeneous vector spaces », Sugaku no Ayumi 15 (1970), p. 85-157, notes by T.Shintani. | Zbl
-[18] -, « Theory of prehomogeneous vector spaces (algebraic part)-the English translation of Sato's lecture from Shintani's note », Nagoya Math. J. 120 (1990), p. 1-34. | MR | Zbl
[19] « A classification of irreducible prehomogeneous vector spaces and their relative invariants », Nagoya Math. J. 65 (1977), p. 1-155. | MR | Zbl
& -[20] « Quelques applications du théorème de densité de Chebotarev », Publ. Math. I.H.E.S. 54 (1981), p. 323-401. | Numdam | MR | Zbl
-[21] « -functions and character sums for quadratic forms. I », Acta Arith. 14 (1967/1968), p. 35-50. | MR | Zbl
-[22] « Elliptic modular forms arising from zeta functions in two variables attached to the space of binary Hermitian forms », J. Number Theory 86 (2001), p. 302-329. | MR | Zbl
-[23] -, « Modular forms arising from zeta functions in two variables attached to prehomogeneous vector spaces related to quadratic forms », 2004, to appear in Nagoya Math. J., p. 1-37. | MR
[24] Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer New York, Inc., New York, 1967. | MR | Zbl
-Cité par Sources :