@phdthesis{BJHTUP11_2002__0624__P0_0, author = {Lebarbier, Emilie}, title = {Quelques approches pour la d\'etection de ruptures \`a horizon fini}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay}, number = {624}, year = {2002}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_2002__0624__P0_0/} }
TY - BOOK AU - Lebarbier, Emilie TI - Quelques approches pour la détection de ruptures à horizon fini T3 - Thèses d'Orsay PY - 2002 IS - 624 PB - Université de Paris-Sud U.F.R. Scientifique d'Orsay UR - http://www.numdam.org/item/BJHTUP11_2002__0624__P0_0/ LA - fr ID - BJHTUP11_2002__0624__P0_0 ER -
Lebarbier, Emilie. Quelques approches pour la détection de ruptures à horizon fini. Thèses d'Orsay, no. 624 (2002), 202 p. http://numdam.org/item/BJHTUP11_2002__0624__P0_0/
[1] Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971). Akadémiai Kiadó, Budapest, 1973, pp. 267-281. | MR | Zbl
[2] A new look at the statistical model identification. IEEE Trans. Automatic Control AC-19 (1974), 716-723. System identification and time-series analysis. | MR | Zbl | DOI
[3] Detecting a changed segment in DNA sequences. J. Roy. Statist. Soc. Ser. C 48, 4 (1999), 489-503. | MR | Zbl
, and[4] The Detection of abrupt changes - Theory and applications. Prentice-Hall : Information and System sciences series, 1993. | MR | Zbl
, and[5] A simple decomposition of empirical distributions and its applications in asset pricing, (submitted) (1997).
, and[6] Baesyian computation and stochastic systems. Statistical Science 10 (1995), 3-66. | MR | Zbl
, , , and[7] Gaussian model selection. J. Eur. Math. Soc. 3 (2001), 203-268. | MR | Zbl | DOI
, and[8] A generalized Cp criterion for Gaussian model selection. Tech. rep., Publication Université Paris-VI, 2001.
, and[9] How many bins should be put in a regular histogram. Tech. rep., Publication Université Paris-VI, 1999.
, and[10] Maximum a posteriori estimation of change points in the EEG. Int. J. of Bio-Medical Computing 38 (1995), 189-196. | DOI
, , , , and[11] Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Statistical Science 87, 2 (2000), 142-162.
, , and[12] Statistical methods for DNA sequence segmentation. Biometrika 13, 2 (1998), 301-314.
, and[13] Classification And Regression Trees. Chapman & Hall, 1984.
, , , and[14] Nonparametric methods in change-point problems. Kluwer Academic Publishers, the Netherlands, 1993. | MR | Zbl | DOI
, and[15] Methods for blind maximum-likelihood linear system identification. Signal Processing 73 (1999), 3-25.
, , , and[16] A Bayesian change-point problem with an application to the prediction and detection of ovulation in women. Biometrics 37, 4 (1981), 743-751. | MR | Zbl | DOI
, and[17] Rao-blackwellisation of sampling schemes. Biometrika 83 (1996), 81-94. | MR | Zbl | DOI
, and[18] Modified akaike's criterion for histogram density estimation. Tech. Rep. 61, Université Paris XI, 1999.
[19] Estimating the locations and number of change points by the sample-splitting method. Statist. Papers 42, 1 (2001), 53-79. | MR | Zbl
[20] Stochastic Models for Heterogeneous DNA Sequences. Bulletin of Mathematical Biology 51, 1 (1989), 79-94. | MR | Zbl | DOI
[21] Limit theorems in change-point analysis. Tech. rep., U.K. : Wiley, 1997.
, and[22] Convergence of a stochastic approximation version of the EM algorithm. The Annals of Stat. 27, 1 (1999), 94-128. | MR | Zbl | DOI
, , and[23] Maximum-likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B 39 (1977), 1-38. | MR | Zbl
, , and[24] Algorithmes Stochastiques. SMAI, Springer, 1996. | MR | Zbl
[25] Using the L-curve for determining optimal regularization parameters. Numer. Math. 69, 1 (1994), 25-31. | MR | Zbl | DOI
, and[26] Maximum likelihood estimation of multiple change points. Biometrika 77, 3 (1990), 563-573. | MR | Zbl | DOI
, and[27] Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. on Pattern Anal. Machine Intell. 6 (1984), 721-741. | Zbl | DOI
, and[28] Model selection for CART regression trees. Tech. Rep. 56, Université Paris XI, 2001.
, and[29] Un test de détection de rupture de la moyenne dans un modèle gaussien. Rev. Statist. Appl. 43, 2 (1995), 67-76. | MR | Zbl | Numdam
[30] Un test de détection de rupture de la moyenne dans un modèle gaussien. Rev. Statist. Appl. 43, 2 (1995), 67-76. | MR | Zbl | Numdam
[31] Reversible jump mcmc computation and bayesian model determination. Biometrika 82 (1995), 711-732. | MR | Zbl | DOI
[32] Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990), 521-8. | MR | Zbl | DOI
, , and[33] Limitations of the L-curve method in ill-posed problems. BIT 36, 2 (1996), 287-301. | MR | Zbl
[34] Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 4 (1992), 561-580. | MR | Zbl | DOI
[35] The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 6 (1993), 1487-1503. | MR | Zbl | DOI
, and[36] Segment : identifying compositional domains in DNA sequences. Bioinformatics 15, 12 (1999), 974-979. | DOI
, and[37] Fundamentals of statistical signal processing - Detection theory, vol. II. Prentice Hall signal processing series, 1998.
[38] A stochastic procedure for parametric and non-parametric estimation in the case of incomplete data. Signal Processing 42 (1995), 3-17. | Zbl | DOI
[39] Optimal segmentation of random processes. IEEE Trans. on Signal Processing 46, 5 (1998), 1365-1373. | DOI
[40] Detection of multiple changes in a sequence of dependent variables. Stoch. Proc. and Appl. 83 (1999), 79-102. | MR | Zbl | DOI
[41] An application of MCMC methods for the multiple change-points problem. Signal processing 81 (2001), 39-53. | Zbl | DOI
, and[42] Least Squares estimation of an unknown number of shifts in a time series. Jour. of Time Series Anal. 21 (2000), 33-59. | MR | Zbl | DOI
, and[43] Quelques approches pour la détection de ruptures à horizon fini. PhD thesis, Université Paris XI, 2002.
[44] Estimating the number of change points in exponential families distributions. Scand. J. Statist. 24, 2 (1997), 201-210. | MR | Zbl | DOI
[45] Modèle de Cox : estimation par sélection de modèle et modèle de chocs bivarié. PhD thesis, Université de Paris-Sud, 2000.
[46] Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8, 3 (1998), 849-867. | MR | Zbl
[47] Some comments on Cp. Technometrics 15 (1974), 661-675. | Zbl
[48] Some Applications of Concentration Inequalities to Statistics. Annales de la Faculté des Sciences de Toulouse IX, 2 (2000), 245-303. | MR | Zbl | Numdam
[49] Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant. Probab. Theory Related Fields 74, 3 (1987), 403-428. | MR | Zbl
, and[50] Markov chains and stochastic stability. Springer-Verlag London Ltd., London, 1993. | MR
, and[51] On detection of change points when the number is unknown. Chinese J. Appl. Probab. Statist. 9, 2 (1993), 138-145. | MR | Zbl
, and[52] Comparaison d'algorithmes d'identification de chaînes de Markov cachées et application à la détection de régions homogènes dans les séquences d'ADN. PhD thesis, Université René Descartes, Paris V, 1997.
[53] Empirical Bayes procedures for a change point problem with application to HIV/AIDS data. In Empirical Bayes and likelihood inference (Montreal, QC, 1997). Springer, New York, 2001, pp. 67-79. | MR | DOI
, and[54] Testing and estimating change points in time series. J. Applied Prob. 17 (1985), 841-867. | MR | Zbl | DOI
[55] Linear statistical inference and its applications, second ed. John Wiley & Sons, New York-London-Sydney, 1973. Wiley Series in Probability and Mathematical Statistics. | MR
[56] Detecting homogeneous segments in DNA sequences by using hidden Markov models. J. Roy. Statist. Soc. Ser. C 48 4 (1999), 489-503.
, and[57] Méthodes de Monte Carlo par Chaînes de Markov. Statistique mathématique et Probabilité. Economica, 1996. | MR | Zbl
[58] Discretization and MCMC convergence assessment Springer-Verlag, New York, 1998. | MR | Zbl
, Ed.[59] Estimating the dimension of a model. Ann. Stat. 6 (1978), 461-464. | MR | Zbl | DOI
[60] Change-point problems : approaches and applications. In Bayesian statistics (Valencia, 1979). Univ. Press, Valencia, 1980, pp. 83-98. | MR | Zbl
[61] Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 2 (2001), 411-423. | MR | Zbl | DOI
, , and[62] Off-line detection and estimation of abrupt changes corrupted by multiplicative colored gaussian noise. Tech. rep., Proc. of ICASSP'97, Munich, April, 1997.
, and[63] Least Squares estimation of multiple abrupt changes contamined by multiplicative noise using mcmc. Tech. rep., Proc. of HOS'99, Caesarea, June, 1999.
, , and[64] Non-convergence of the L-curve regularization parameter selection method. Inverse Problems 12, 4 (1996), 535-547. | MR | Zbl | DOI
[65] Detecting "disorder" in multidimensional random processes. Soviet. Math. Dokl. 24 (1981), 55-59. | Zbl
[66] Estimating the number of change-points via Schwarz criterion. Stat. & Probab. Lett. 6 (1988), 181-189. | MR | Zbl | DOI
[67] Change-point models in industrial applications. In Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996) (1997), vol. 30, pp. 3997-4006. | MR | Zbl