Mesures et dimensions
Thèses d'Orsay, no. 133 (1983) , 160 p.
@phdthesis{BJHTUP11_1983__0133__P0_0,
     author = {Tricot, Claude},
     title = {Mesures et dimensions},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e Paris-Sud Centre d'Orsay},
     number = {133},
     year = {1983},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1983__0133__P0_0/}
}
TY  - BOOK
AU  - Tricot, Claude
TI  - Mesures et dimensions
T3  - Thèses d'Orsay
PY  - 1983
IS  - 133
PB  - Université Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1983__0133__P0_0/
LA  - fr
ID  - BJHTUP11_1983__0133__P0_0
ER  - 
%0 Book
%A Tricot, Claude
%T Mesures et dimensions
%S Thèses d'Orsay
%D 1983
%N 133
%I Université Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1983__0133__P0_0/
%G fr
%F BJHTUP11_1983__0133__P0_0
Tricot, Claude. Mesures et dimensions. Thèses d'Orsay, no. 133 (1983), 160 p. http://numdam.org/item/BJHTUP11_1983__0133__P0_0/

(1) "Two definitions of fractional dimension", Math. Proc. Camb. Phil. Soc. 91 (1982), 57-74. | MR | Zbl | DOI

(2) "Douze définitions de la densité logarithmique", C. R. Acad. Sc. Paris 293 (1981), 549-552. | MR | Zbl

(3) "Metric properties of the compact subsets of measure zero in the plane", soumis à Mathematika.

(4) "A new proof for the residual set dimension of the apollonian packing", soumis à Math. Proc. Camb. Phil. Soc. | Zbl

(5) "Dimensions de spirales", avec Y. Dupain et M. Mendès-France, Bull. Soc. math. France III (1983) N° 2, 1-9. | MR | Zbl | Numdam

(6) "Packing measures, and their evaluation for the path of Brownian motion", avec S. J. Taylor, soumis à Bull. Amer. Math. Soc.

(7) "Etude dimensionnelle d'un compact par le pavage du complémentaire", complément à cette thèse.

[1] A. S. Besicovitch & P. A. P. Moran, "The measure of product and cylinder sets", J. Lond. Math. Soc. 20 (1945), 110-120. | MR | Zbl

[2] A. S. Besicovitch & S. J. Taylor, "On the complementary intervals of a linear closed set of zero Lebesgue measure", J. Lond. Math. Soc. 29 (1954), 449-459. | MR | Zbl | DOI

[3] P. Billingsley, "Hausdorff dimension in probability theory", Illinois J. Math. 5 (1961), 291-298. | MR | Zbl | DOI

[4] E. Borel, "Les ensembles de mesure nulle", Bull. Soc. Math. France 41 (1913), 1-19. | MR | JFM | Numdam

[5] E. Borel, "Sur les ensembles de mesure nulle", Fund. Math. 25 (1935), 7-19. | JFM | DOI

[6] E. Borel, "Sur l'addition vectorielle des ensembles de mesure nulle", C. R. Acad. Sc. Paris 227 (1948), 103-105. | MR | Zbl

[7] G. Bouligand, "Ensembles impropres et nombre dimensionnel", Bull. Sc. Math. II 52 (1928), 320-334 & 361-376. | JFM

[8] G. Bouligand, "Sur la notion d'ordre de mesure d'un ensemble plan", Bull. Sc. Math. II 53 (1929), 185-192. | JFM

[9] D. W. Boyd, "The residual set dimension of the apollonian packing", Mathematika 20 (1973), 170-174. | MR | Zbl | DOI

[10] Z. Ciesielski & S. J. Taylor, "First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path", Trans. Am. math. Soc. 103 (1962), 434-450. | MR | Zbl | DOI

[11] J.-P. Kahane & R. Salem, "Ensembles parfaits et séries trigonométriques" (1963), Hermann. | MR | Zbl

[12] B. Mandelbrot, "The fractal geometry of nature" (1982), W. H. Freeman. | MR | Zbl

[13] Z. A. Melzak, "Infinite packing of disks", Canad. J. Math. 18 (1966), 838-852. | MR | Zbl | DOI

[14] C. A. Rogers, "Hausdorff measures" (1970), Camb. Univ. Press. | MR | Zbl

[15] C. A. Rogers & S. J. Taylor, "Functions continuous and singular with respect to a Hausdorff measure", Mathematika 8 (1961), 1-31. | MR | Zbl | DOI

[16] E. M. Stein, "Singular integrals and differentiability properties of functions", (1970), Princeton University Press. | MR | Zbl

[17] C. Tricot, "Sur la notion de densité", Cahiers du département d'économétrie de l'Université de Genève (1973).

[18] C. Tricot, Jr, "Sur la classification des ensembles boréliens de mesure de Lebesgue nulle" (1979), thèse de doctorat, Genève.

[19] C. Tricot, Jr, "Rarefaction indices", Mathematika 27 (1980), 46-57. | MR | Zbl | DOI

(1) Beardon, A. F. The generalized capacity of Cantor sets, Quart. J. Math. Oxford (2) 19 (1968), 301-304. | MR | Zbl | DOI

(2) Besicovitch, A. S. and Moran, P. A. P. The measure of product and cylinder sets. J. London Math. Soc. 20 (1945), 110-120. | MR | Zbl

(3) Billingsley, P. Hausdorff dimension in probability theory. Illinois J. Math. 4 (1960), 187-209. | MR | Zbl | DOI

(4) Davies, R. O. Subsets of finite measure in analytic sets. Indagat. Math. 14 (1952), 488-489. | MR | Zbl | DOI

(5) Eggleston, H. G. A correction to a paper on the dimension of cartesian product sets. Proc. Camb. Phil. Soc. 49 (1953), 437-440. | MR | Zbl | DOI

(6) Hawkes, J. Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28 (1974), 700-724. | MR | Zbl | DOI

(7) Kahane, J. P. et Salem, R. Ensembles parfaits et séries trigonométriques. Paris, Hermann, 1963. | MR | Zbl

(8) Kaufman, R. On Hausdorff dimension of projections. Mathematika 15 (1968), 153-155. | MR | Zbl | DOI

(9) Kolmogorov, A. N. and Tihomirov, V. M. ϵ -Entropy and ϵ -capacity of sets in functional spaces. Amer. Math. Soc. Transl. 17 (1961), 277-364. | MR | Zbl

(10) Larman, D. G. On Hausdorff measure in finite-dimensional compact metric spaces. Proc. London Math. Soc. (3), 17 (1967), 193-206. | MR | Zbl | DOI

(11) Marstrand, J. M. The dimension of the cartesian product sets. Proc. Camb. Phil. Soc. 50 (1954), 198-202. | MR | Zbl | DOI

(12) Rogers, C. A. Hausdorff measures. Cambridge University Press, 1970. | MR | Zbl

(13) Rogers, C. A. and Taylor, S. J. Additive set functions in euclidean space. Acta Math. 101 (1959), 273-302. | MR | Zbl | DOI

(14) Tricot, C. Sur la notion de densité. Cahiers du Dep. d'Econométrie de l'Université de Genève (1973).

(15) Tricot Jr, C. Sur la classification des ensembles boré liens de measure de Lebesgue nulle. Genève, Imprimerie Nationale, 1980.

(16) Tricot Jr, C. Rarefaction indices. Mathematika 27 (1980), 46-57. | MR | Zbl | DOI

(17) Wegmann, H. Die Hausdorff-Dimension von kartesischen Produktmengen in metrischen Räumen. J. Reine Angew. Math. 234 (1969), 163-171. | MR | Zbl

[1] G. Bouligand, Bull. Sc. math., 52, (2), 1928, p. 320-376. | JFM

[2] A. N. Kolmogorov et V. M. Tihomirov, Uspekhi Mat. Nauk., 14, no. 2, (86), 1959, p. 3-86 ; Amer. Math. Soc. Transl. ; 17, (2), 1961, p. 277-364. | MR

[3] C. Tricot, Sur la notion de densité, Cahiers du département d'Économétrie de l'Université de Genève, 1973.

[4] L. Pontrjagin et L. Schnirelmann, Ann. of Math., 33, 1932, p. 156-162. | MR | Zbl | JFM | DOI

[5] J. Hawkes, Proc. Lond. Math. Soc., 28, (3), 1974, p. 700-724. | MR | Zbl | DOI

[6] P. Lévy, Processus stochastiques et mouvement brownien, 2e édition, Gauthier-Villars, Paris, 1965. | MR | Zbl

[7] E. Borel, Comptes rendus, 227, 1948, p. 103-105. | Zbl

[8] M. Fréchet et Z. Moszner, Ann. scient. Ec. Norm. Sup., 82, (3), 1965, p. 181-203. | MR | Numdam | Zbl | DOI

[9] A. S. Besicovitch et S. J. Taylor, J. Lond. Math. Soc., 29, 1954, p. 449-459. | Zbl | DOI

[10] C. Tricot Jr., Proc. Camb. Phil. Soc. (à paraître).

[11] J. Peyrière, Duke Math. J., 44, 1977, p. 591-601. | MR | Zbl | DOI

[12] J.-P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. | MR | Zbl

[1] Borel, E. Sur l'addition vectorielle des ensembles de mesure nulle. Cr. Acad. Sc. 227 (1948), 103-105. | MR | Zbl

[2] Bouligand, G. Sur la notion d'ordre de mesure d'un ensemble fermé. Bull. Sc. math. (2) 52 (1928), 320-376.

[3] Boyd, D. W. Osculatory packing by spheres, Canad. Math. Bull. 13 (1970), 59-64. | MR | Zbl | DOI

[4] Besicovitch, A. S. & Taylor, S. J. On the complementary intervals of a linear closed set of zero Lebesgue measure. J. London Math. Soc. 29 (1954), 449-459. | MR | Zbl | DOI

[5] Eggleston, H. G. On closest packing by equilateral triangles. Proc. Camb. Phil. Soc. 49 (1953), 26-30. | MR | Zbl | DOI

[6] Kahane, J.-P. Courbes étranges, ensembles minces. Bull. Ass. des Professeurs de Mathématiques de l'enseignement Public, 49 (1970) 325-339.

[7] Kahane, J.-P. & Salem, R. Ensembles parfaits et séries trignométriques. Paris, Hermann (1963). | MR | Zbl

[8] Kolmogorov, A. N. & Tihomirov, V. M. ϵ -entropy and ϵ -capacity of sets of function spaces. Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3-86. English translation : Amer. Math. Soc. Transl. (2) 17 (1961), 277-364. | MR | Zbl

[9] Mandelbrot, B. Fractals : form, chance and dimension. San Francisco, W. H. Freeman & Co., (1977). | MR | Zbl

[10] Melzak, Z. A. Infinite packing of disks. Canad. J. Math. 18 (1966), 838-852. | MR | Zbl | DOI

[11] Melzak, Z. A. On the solid packing constant for circles. Math. Comp. 23 (1969), 169-172. | MR | Zbl | DOI

[12] Tricot, C. Sur la notion de densité. Cahiers du dépt. d'Econométrie de l'Université de Genève, 1973.

[13] Tricot, C. Jr. Douze définitions de la densité logarithmique. Cr. Acad. Sc. Paris 293 (1981) 549-552. | MR | Zbl

[1] D.W. Boyd, "Osculatory packings by spheres", Canad. Math. Bull. 13 (1970), 59-64. | MR | Zbl | DOI

[2] D.W. Boyd "The disk packing constant", Aeq. Math. 7 (1972), 182-193. | MR | Zbl | DOI

[3] D.W. Boyd "Improved bound for the disk packing constant", Aeq. Math. 9 (1973), 99-106. | MR | Zbl | DOI

[4] D.W. Boyd "The residual set dimension of the apollonian packing", Mathematika 20 (1973), 170-174. | MR | Zbl | DOI

[5] K.E. Hirst, "The apollonian packing of circles", J. Lond. Math. Soc. 42 (1967), 281-291. | MR | Zbl | DOI

[6] D.G. Larman, "On the Besicovitch dimension of the residual set of arbitrarily packed disks in the plane", J. Lond. Math. Soc. 42 (1967), 292-302. | MR | Zbl | DOI

[7] C.A. Rogers & S.J. Taylor, "Functions continuous and singular with respect to a Hausdorff measure" Mathematika 8 (1961), 1-31. | MR | Zbl | DOI

[8] C. Tricot, "Metric properties of compact sets of measure 0 in 2 ", to appear.

[1] D'Arcy Thompson, On Growth and Form, J. T. Bonner, éd., Cambridge University Press, 1969. | MR

[2] Borel (E.). - Éléments de la théorie des ensembles, Albin-Michel, 1949. | MR | Zbl

[3] Bouligand (G.). - Sur la notion d'ordre de mesure d'un ensemble fermé, Bull. Sc. Math., vol. 2, n° 53, 1929, p. 185-192. | JFM

[4] Cook (T. Ä.). - Curves of Life, Dover, 1979.

[5] Dekking (F. M.) et Mendès-France (M.). - Uniform Distribution Modulo One : a Geometrical Viewpoint, Jour für die Reine und Angewandte Mathematik, vol. 329, 1981, p. 143-153. | MR | Zbl

[6] Kolmogorov (A. N.) et Tihomirov (Y. M.).- ϵ -Entropy and ϵ -Capacity of Sets in Functional Spaces, Amer. Math. Soc. Translations, vol. 17, série 2, 1961, p. 277-364. | MR | Zbl | DOI

[7] Mandelbrot (B. B.). - Fractals, Form Chance and Dimension, Freeman, 1977. | MR | Zbl

[8] Mendès-France (M.). - Chaotic Curves, Luminy symposium on Oscillations, sept. 1981, J. Demongeot, éd., Springer Verlag Lecture Notes in Biomathematics (à paraître) | MR | Zbl

[9] Mendès-France (M.) et Tenenbaum (G.). - Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro, Bull. Soc. math. France, t. 109, 1981, p. 207-215. | MR | Zbl | Numdam | DOI

[10] Santalȯ (L.). - Integral Geometry and Geometric Probability, Encyclopedia of Mathematics, Addison Wesley, 1976. | MR | Zbl

[11] Steinhaus (H.). - Length Shape and Area, Colloquium Mathematicum, vol. 3, 1954, p. 1-13. | MR | Zbl | DOI

[12] Stevens (P. S.). - Les formes dans la nature, Seuil Science Ouverte, 1978.

[13] Tricot (C.). - Douze définitions de la densité logarithmique, C.R. Acad. Sc. Paris, t. 293, série I, 1981, p. 549-552. | MR | Zbl

1. M. Bruneau, Variation totale d'une fonction, Lecture notes in Mathematics (413), Springer-Verlag 1974. | MR | Zbl

2. Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450. | MR | Zbl | DOI

3. A. Dvoretzki and P. Erdös, Some problems on random walk in space, Proc. Second Berkeley Symp. (1950), 353-367. | MR | Zbl

4. O. Frostman, Potentiel d'équilibre et capacité des ensembles, Medd Lunds Univ. Mat. Semin. 3 (1935). | JFM

5. C. Goffman and J. J. Loughlin, Strong and weak ϕ -variation of Brownian motion, Indiana Univ. Math. Jour. 22 (1972), 135-138. | MR | Zbl | DOI

6. F. Hausdorff, Dimension und ausseres Mass, Math. Annalen 79 (1919), 157-179. | MR | JFM

7. C. A. Rogers, Hausdorff measures, Cambridge Press 1970. | MR | Zbl

8. C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1-31. | MR | Zbl | DOI

9. S. J. Taylor, The exact Hausdorff measure of the sample path for planar Brownian motion, Proc. Camb. Phil. Soc. 60 (1964), 253-258. | MR | Zbl | DOI

10. S. J. Taylor, On the connection between generalized capacities and Hausdorff measures, Proc. Camb. Phil. Soc. 57 (1961), 524-531. | MR | Zbl | DOI

11. S. J. Taylor, Exact asymptotic estimates of Brownian path variation, Duke Math. Jour. 39 (1972), 219-241. | MR | Zbl | DOI

12. S. J. Taylor and J. G. Wendel, The exact Hausdorff measure of the zero set of a stable process, Z. Wahrscheinlichkeitstheorie 6 (1966), 170-180. | MR | Zbl

13. C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle (Thèse de doctorat), Genève 1979.

14. C. Tricot, Douze définitions de la densité logarithmique, C. R. Acad. Sc. Paris 293 (1981), Série I, 549-552. | MR | Zbl

15. C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc. 91 (1982), 57-74. | MR | Zbl | DOI

[1] E. M. Stein, "Singular integrals and differentiability properties of functions", Princeton University Press, 1970. | MR | Zbl

[2] C. Tricot, "12 définitions de la densité logarithmique", C. R. Acad. Sc. Paris 293 (1981), 549-552. | MR | Zbl

[3] C. Tricot, "Metric properties of compact sets of measure 0 in 2 ", à paraître.