@phdthesis{BJHTUP11_1981__0102__P0_0, author = {David, Guy}, title = {Courbes de {Lavrentiev} et int\'egrales singuli\`eres}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {102}, year = {1981}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1981__0102__P0_0/} }
David, Guy. Courbes de Lavrentiev et intégrales singulières. Thèses d'Orsay, no. 102 (1981), 56 p. http://numdam.org/item/BJHTUP11_1981__0102__P0_0/
[1] Quasiconformal reflections. Acta Math. 109 (1963), 291-301. | MR | Zbl | DOI
[2] Lectures on quasiconformal mappings. Princeton (1966). | MR | Zbl
[3] Commutators, singular integrals on Lipschitz curves and applications. Proc. I. C. M. Helsinski 1968, 85-96. | MR | Zbl
[4] Cauchy integral on Lipschitz curves and related operators. Proc. Nat. Acad. Sc. 74, 4 (1977), 1324-1327. | MR | Zbl | DOI
[5] Au delà des opérateurs pseudodifférentiels. Astérisque 57. | MR | Zbl | Numdam
,[6] Le théorème de Calderon par les méthodes de variable réelle. C. R. Acad. Sc. Paris 289 (1979), 425-428. | MR | Zbl
,[7] Hardy spaces, , and singular integrals on chord-arc domains. | Zbl
and[8] Hp spaces of several variables. Acta Math. 129 (1972), 137-193. | MR | Zbl | DOI
and[9] Recent progress in analysis. Proc. I. C. M. Vancouver (1974). | MR | Zbl
[10] On functions of bounded mean oscillation. Comm. Pure and Appl. Math. 14 (1961), 415-426. | MR | Zbl | DOI
and[11] Thèse.
[12] Homeomorphisms of the line which conserve BMO. A paraître dans Comm. Math. Helv. | MR | Zbl
[13] Weighted Hardy spaces on Lipschitz domains. Amer. J. Math. 102 (1980), 129-163. | MR | Zbl | DOI
[14] Boundary problems in the theory of univalent functions. Math. S. D. (N. S.) 1 (43) (1936), 815-844. (en russe). Amer. Math. Soc. Transl., sér. 2, vol. 32, 1-35. | MR | Zbl
[15] Univalent functions. J. London Math. Soc. (2) (1970), 689-695. | Zbl
[16] Schlichte Funktionen und analytische Funktionen Von beschränkter mittlerer Oszillation. Comm. Math. Helvetici 52 (1977), 591-602. | MR | Zbl | DOI
[17] Singular integrals and differentiability properties of functions. Princeton (1970). | MR | Zbl
[18] Thèse.