@incollection{AST_2009__327__55_0, author = {Grothaus, Martin and Streit, Ludwig and Vogel, Anna}, title = {Feynman integrals as {Hida} distributions: the case of non-perturbative potentials}, booktitle = {From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut}, editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping}, series = {Ast\'erisque}, pages = {55--68}, publisher = {Soci\'et\'e math\'ematique de France}, number = {327}, year = {2009}, mrnumber = {2642352}, zbl = {1200.60056}, language = {en}, url = {http://www.numdam.org/item/AST_2009__327__55_0/} }
TY - CHAP AU - Grothaus, Martin AU - Streit, Ludwig AU - Vogel, Anna TI - Feynman integrals as Hida distributions: the case of non-perturbative potentials BT - From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut AU - Collectif ED - Dai Xianzhe ED - Léandre Rémi ED - Xiaonan Ma ED - Zhang Weiping T3 - Astérisque PY - 2009 SP - 55 EP - 68 IS - 327 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2009__327__55_0/ LA - en ID - AST_2009__327__55_0 ER -
%0 Book Section %A Grothaus, Martin %A Streit, Ludwig %A Vogel, Anna %T Feynman integrals as Hida distributions: the case of non-perturbative potentials %B From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut %A Collectif %E Dai Xianzhe %E Léandre Rémi %E Xiaonan Ma %E Zhang Weiping %S Astérisque %D 2009 %P 55-68 %N 327 %I Société mathématique de France %U http://www.numdam.org/item/AST_2009__327__55_0/ %G en %F AST_2009__327__55_0
Grothaus, Martin; Streit, Ludwig; Vogel, Anna. Feynman integrals as Hida distributions: the case of non-perturbative potentials, dans From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 55-68. http://www.numdam.org/item/AST_2009__327__55_0/
[1] Spectral methods in infinite-dimensional analysis, Kluwer Academic, 1995, originally in Russian, Naukova Dumka, Kiev, 1988. | DOI | MR | Zbl
& -[2] Path integrals for boundaries and topological constraints: a white noise functional approach", J. Math. Phys. 43 (2002), p. 1728-1736. | DOI | MR | Zbl
& - "[3] A family of integrals serving to connect the Wiener and Feynman integrals", J. Math, and Phys. 39 (1960/1961), p. 126-140. | DOI | MR | Zbl
- "[4] Sur une résolution stochastique de l'équation de Schrödinger à coefficients analytiques", Comm. Math. Phys. 73 (1980), p. 247-264. | DOI | MR | Zbl
- "[5] Feynman integrals for nonsmooth and rapidly growing potentials", J. Math. Phys. 46 (2005), 063505. | DOI | MR | Zbl
, & - "[6] The Feynman integrand as a Hida distribution", J. Math. Phys. 32 (1991), p. 2123-2127. | DOI | MR | Zbl
, & - "[7] The Feynman integral for time-dependent anharmonic oscillators", J. Math. Phys. 38 (1997), p. 3278-3299. | DOI | MR | Zbl
, , & - "[8] The Feynman integrand as a white noise distribution beyond pertubation theory", in Stochastic and quantum dynamics of biomolecular systems. Proceedings of the 5th Jagna international workshop, Jagna, Bohol, Philippines, 3-5 January 2008. Melville, NY: American Institute of Physics (C. Bernido et al., eds.), AIP Conference Proceedings, vol. 1021, 2008, p. 25-33. | Zbl
& - "[9] Brownian motion, Applications of Mathematics, vol. 11, Springer, 1980. | MR | Zbl
-[10] White noise, Mathematics and its Applications, vol. 253, Kluwer Academic Publishers Group, 1993. | MR | Zbl
, , & -[11] Constructing the Feynman integrand", Ann. Physik 1 (1992), p. 49-55. | DOI | MR
& - "[12] Generalized functionals in Gaussian spaces: the characterization theorem revisited", J. Funct. Anal 141 (1996), p. 301-318. | DOI | MR | Zbl
, , , & - "[13] Feynman integrals for a class of exponentially growing potentials", J. Math. Phys. 39 (1998), p. 4476-4491. | DOI | MR | Zbl
, & - "[14] White noise distribution theory, Probability and Stochastics Series, CRC Press, 1996. | MR | Zbl
-[15] Path integrals in non-commutative geometry", in Encyclopedia of Mathematical Physics, Academic Press/Elsevier Science, 2006, p. 8-12. | DOI
- "[16] Introduction to white noise analysis", in Control theory, stochastic analysis and applications (Hangzhou, 1991), World Sci. Publ., River Edge, NJ, 1991, p. 39-58. | MR
- "[17] Feynman integrals and white noise analysis", in Stochastic analysis and mathematical physics (SAMP/ANESTOC 2002), World Sci. Publ., River Edge, NJ, 2004, p. 285-303. | DOI | MR
& - "