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F E Y N M A N INTEGRALS AS HIDA DISTRIBUTIONS: T H E 
C A S E OF NON-PERTURBATIVE POTENTIALS 

by 

Martin Grothaus, Ludwig Streit & Anna Vogel 

Dedicated to Jean-Michel Bismut as a small token of appreciation 

Abstract, — In this note the concepts of path integrals as generalized expectations 
of White Noise distributions is presented. Combining White Noise techniques with 
a generalized time-dependent Doss' formula Feynman integrands are constructed as 
Hida distributions beyond perturbation theory. 
Résumé (Les intégrales de chemins comme distributions de Hida: le cas de potentiel non-
perturbatif) 

Dans cette note, on introduit les intégrales de chemins comme étant des espérances 
de bruits blancs généralisés. On combine les techniques de bruits blancs avec une 
généralisation de la méthode de Doss pour construire les « intégrales » de Feynman 
comme distributions de Hida, au-delà de la théorie perturbative. 

1. Introduction 

Feynman "integrals", such as 

J = I d°°x exp 
t 
i 
0 

(T(x(s))-V(x(s)))ds)f(x( . ) ) 

are commonplace in physics and meaningless mathematically as they stand. Within 
white noise analysis [1, 2, 9, 10, 12, 14, 15, 16, 17] the concept of integral has 
a natural extension in the dual pairing of generalized and test functions and allows 
for the construction of generalized functions (the "Feynman integrands") for various 
classes of interaction potentials V, see e.g. [5, 6, 7, 10, 11, 13, 17], all of them by 
perturbative methods. This work extends this framework to the case where these fail, 
using complex scaling as in [4], see also [3]. 

In Section 2 we characterize Hida distributions. In Section 3 the [/-functional is 
constructed, see Theorem 3.3. We prove in Section 4 that we obtain a solution of the 
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5 6 MARTIN G R O T H A U S , L U D W I G STREIT & A N N A V O G E L 

Schroedinger equation, see Theorem 4.4. The strategy for a general construction of 
the Feynman integrand is provided in Section 5. Examples are given in Section 6. 

2. White Noise Analysis 

The white noise measure // on Schwartz distribution space arises from the charac­
teristic function 

C(f) := exp - e l l / 1 1 3 ' / € 5(R), 

via Minios' theorem, see e.g. [1, 9, 10]: 

C(f) = 
'S' 

exp (i(u>,f)) dfi{üj). 

Here (•, •) denotes the dual pairing of 5'(R) and S (K) . We define the space 

( L 2 ) : = L 2 ( S ' ( R ) , 2 U ) 

In the sense of an L2-limit to indicator functions l[o,t)>£ > 0, a version of Wiener's 
Brownian motion is given by: 

B(t,u) := (w,l[o,t)> = 
t 
0 v(s) ds, t > 0 

One then constructs a Gel'fand triple: 

(5) C L 2 (M ) C (5 ) ' 

of Hida test functions and distributions, see e.g. [10]. We introduce the T-transform 
of $ e (ST by 

(T*)(g) := «*,exp (i(;g)))), g e S(R), 

where ((•,•)) denotes the bilinear dual pairing between (S)f and (5) . Expectation 
extends to Hida distributions $ by 

Eu(Q):=«*,!»• 

Definition 2.1. — A function F : S(M) —> C is called U-functional if 

(i): F is "ray-analytic": for all g,h € S(R) the mapping 

R 3 y » F(g + yh) G C 

has an analytic continuation to C as an entire function. 
(ii): F is uniformly bounded of order 2, i.e., there exist some constants 0 < K,D < 

oo and a continuous norm \\ • || on S(M) such that for all w G C, g € 5(R) 

\F(wg)\<Kexp(D\w\2\\g\\2). 

Theorem 2.2. — The following statements are equivalent: 

(i): F : S(R) C is a U-functional. 

(ii): F is the T-transform of a unique Hida distribution $ G (S) 7 . 

For the proof and more see e.g. [10]. 
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F E Y N M A N INTEGRALS AS HIDA DISTRIBUTIONS 57 

3. Hida distributions as candidates for Feynman Integrands 

In this section we construct Hida distributions as candidates for the Feynman 
integrands. First we list which properties potentials must fulfill. 

Assumption 3.1. — For 9 C R open, where R \ 9 is a set of Lebesgue measure zero, 

we define the set 2) C C by 

<D\=ix + Viy x e 9 and y G R j . 

and consider analytic functions Vb : 0 —* C and f : C —• C. Let 0 < t < T < oo. 

PFe require that there exists an 0 < e < 1 and a function I : 2) —> R sitc/i £/ia£ ¿¿5 
restriction to 9 is measurable and locally bounded and 

(3-D 

E exp — i f Vo [z + \TiBs)ds 1 / [ z + V i B t ) exp 
f4B\\2

sup,T 

2 
< J ( z ) , * G 0 , 

uniformly inO <t <T. Here E denotes the expectation w.r.t a Brownian motion B 

starting at 0. \\ • | | S U p , T denotes the supremum norm over [0,T]. 

We shall consider time-dependent potentials of the form 

(3.2) 

Vg : [0,71 x 2>->C 

(t,z)~V0(z) + g(t)z 

for g G 5(R) . 

Remark 3.2. — One can show that (3.1) implies that 

E exp 
ft—10 

~{/ Vg(t- s,z + \TiB^}ds j flz + VÏBt-t0) 

¿5 well-defined for all g G S(R), 0 < t0 < t < T and z G (D. 

Theorem 3.3. — Let 0 < T < oo and (p : R —> R 6e Bore/ measurable, bounded with 
compact support. Moreover we assume that Vq and f fulfill Assumption 3.1. Then for 
allO <to <t <T, the mapping 

FVtttftt0 : 5(R) -> C 

(3.3) <7 I—• exp 
1 

~ 2, (to,t]e 
g2{s) ds 

R 
exp(-ig(t0)x)<p(x) (G(g, t,t0) exp(ig(t)-)f ) {x) dx 

is aU-functional where for x G 9 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 

file:///TiBs
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(3.4) W^to)exp(^)-)/)w ~ E exp - i 
rt — to 

0 
Vg (t - S, X + ds 

x exp (ig(t)(x + \ZÏBt-t0^f(x + y/iBt-to) 

Proof. — ^>,t,/,t0 is well-defined: (3.4) is finite because of (3.1), and the integral in 
(3.3) exists since cp is bounded with compact support. 

To show that F^^JM is a {/-functional we must verify two properties, see Definition 
2.1. 

First Ftpit j,t0 must have a "ray-analytic" continuation to C as an entire function. 
I.e., for all g, h G S(R) the mapping 

R3 y ^ F^tj^ig + yh) eC 

has an entire extension to C. 
We note first that this is true for the expression 

(3.5) u(y) := exp — i 
'o 

>t-*o 
Vg+yh t — s,x + ViB) ds 

x exp (i (g + yh) (t) (x + yfiBt.to\\ f [x + V i B t - t 0 ) 

inside the expectation in (3.4). Hence the integral of u over any closed curve in C is 
zero. By Lebesgue dominated convergence the expectation E[u(w)] is continuous in 
w. With Fubini 

f E [u (w)] dw = E é u (w) dw = 0, 

for all closed paths, hence by Morera E(u(w)) is entire. This extends to (3.3) since (p 
is bounded with compact support. Thus 

Cbw^ F^tj^ig + wh)eC 

is entire for all 0 < t0 < t < T and all g, h G S(R). 

Verification is straightforward that i^>,t,/,t0 * s °f 2nd order exponential growth, 

^V,t,/,t0

 l s a U-functional. • 

One can show the same result by choosing the delta distribution Sx, x G 0, instead 
of a test function ip: 

Corollary 3.4. — Let VQ and f fulfill Assumption 3.1 and let x G 0. Then for all 
0 < to < t < T the mapping 

F s x M S(R) - C 

g (-> exp 
1 

~ 2 [to,t]c 

g2(s) ds exp(-ig(t0)x) \G(g, t, t0) exp(ig{t)-)J f(x) 
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F E Y N M A N INTEGRALS AS HIDA DISTRIBUTIONS 59 

is a U-functional, where [G(g,t,t0)exp(ig(t)-)) f(x) is defined as in Theorem 3.3. 

4. Solution to time-dependent Schr6dinger equation 

Assumption 4.1. — Let Vb : 2) —> C and f : C —• C such that Assumption 3.1 is 
fulfilled and Vg, g G S(R), as in (3.2). 

(i): For all u,v,r,l G [0,T] and all z G 2) we require that 

E1 exp — i г 
f0 

Vg(v-s,z + y/iBl) dt 

(4.1) 

xjEJ2 exp — i f Vg(l - s,z + ViBl + ViBl} ds f(z + SiBl + ViBÍ) < 0 0 . 

(ii): For all z e 0, 0 < to < t < T and some 0 < e < T the functions 

u • sup 
0<h<e 

Vg(t,z + V~iBh(u)^ 4 
Jo 

d_ 
&t 

Vg(t + h- s,z + ViBs(u})^ ds 

(4.2) x exp — г 
ph 

Jo 
VAt + h-8,z + y/iBa((j)) ds / ( * + V í B * ( ü ; ) ) 

and 

uj i—• sup 
/iG[0,T] 

A £ 2 exp 
ft —to 

Jo 
Và\t-s,z + V~iB\{w) + ViBlj ds 

(4.3) x f(z + V~iB\{w) + ViB2t-t0 

are integrable. 

Here B1 and B2 are Brownian motions starting at 0 with corresponding expectations 
E1 andE2, respectively. Moreover A denotes and J¿ the derivative w.r.t. the first 
variable. 

We define #(2)) to be the set of holomorphic functions from 2) to C. As pointed 
out by H. Doss, see [4], under specified assumptions (similar to Assumption 3.1 and 
Assumption 4.1 (ii)) there is a solution : [0,T] x 2) —• C to the time-independent 
Schrodinger equation, i.e., for all t G [0,T] and x G 9 

Umtfox) = -\^{t,x) + V0{x)^{t,x) 

LK0 ,x ) = / ( s ) 

which is given by 

V>(£, x) = E exp — i f 
/о 

V0(x + ViB^ds j f(x + ViBt) 
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Remark 4.2. — Let us consider the case of the free motion, i.e., VQ = 0. We assume 

that f : 2) —> C is an analytic function, such that E^f(^z + ViBt^, z G 2), 0 < t < T, 

exists and is uniformly bounded on [0,T]. Moreover let 

u) »—• sup 
h€[0,T] 

Af(z + ViBh{«>)) 

be integrable, then 

d_ 

dt 
Eiflx + ViBt) -i-AE 

2 
f(x + ViBt)] 

forxe9,0<t<T, see [4]. 

For our purpose a generalization to the time-dependent case 

(4.4) iít{U(t,t0)f)(x) = (H(t)U(t,t0)f)(x) 

(U(t0,t0)f)(x) = f(x) 
xe9, 0<t0<t<T, 

where H(t) := -\A+Vg(t, •) iov g e 5(R) andO < t < T, is necessary. In the following 
we show that the operator U(t,t0) : D(t,t0) C H(<D) -> H(<D), 0<to<t<T, given 
by 

(4.5) 

U(t,t0)f(z) :=E exp — i 
ft—to 

/0 

Vg(t- s,z + ViBs^ds\ f(z + VÏBt-to) , ze 2), 

provides us with a solution to (4.4). Here by D(t,to) we denote the set of functions 
/ G H(0) such that the expectation in (4.5) is a well-defined object in H(0). 

Lemma 4.3. — Let VQ and f fulfill the Assumptions 3.1 and 4-1 then the operator 
U(t,to), 0 < to < t < T, as in (4-5), maps from D(t,to) to H(^D). Moreover 
U(r, to)f G D(t, r) and one gets that 

U(tìto)f(z) = U(tìr)(U(r,t0)f)(z)ì 

for allO <t0 <r <t <T and z G 2). 

Proof. — The property that U(t, to), 0 <to <t <T, asm (4.5), maps from D(t, t0) to 
if(2)) follows by using Morera and Assumption 3.1. The fact that U(r,to)f G D(t,r) 
follows by Assumption 4.1 (i). Let 0<to<r<t<T and z G D, then one gets with 
the Markov property and the time-reversibility of Brownian motion that 

(4.6) U(t,to)f(z) = E exp — i 
ft —to 

'o 
Và\t-s,z + VÏBa)ds] f(z + yfiBt-to) 

= E exp — i 
»t-r 

lo 
Vg(t- s,z + V~iBs^ds 

x exp — i 
>t—r+r—to 

't-r 
Vg(t- SiZ + ViBsJds / ( * +VÏB t - to) 

ASTÉRISQUE 327 



FEYNMAN INTEGRALS AS HIDA DISTRIBUTIONS 61 

= E exp I — i 

t-r 

Jo 
Vg(t- s,z + \TiBs)ds 

x exp — i 
ff—10 

/0 
Vg f r - s + 1 - r, z + yfiBs+t-r jds f^Z + ViBt-r+r-tOj 

= EX exp(-ij Vg(t-s,z + yfiB]}ds 

x E2 exp I — i 
rr-to 

'o 
(r - A , z + ViBJ_r + VFO? J ds f(z + ViBÌ_r + V~iB2

r_t0) 

= U(t,r)(U(r,t0)f)(z). 

One can show that by U(t,to), 0 < to < t < T, a, pointwise-defined (unbounded) 
evolution system is given. 

Theorem 4.4. — Let 0 < T < oo, V0, Vg, g G S(R), as in (3.2), and f such that 

Assumption 3.1 and 4-1 are fulfilled. Then U(t,to)f(x), 0 < to < t < T, x G 9, given 

in (4-5) solves the Schröding er equation (4-4)-

Proof — Let 0 <t0 <t <T, x e 0 and g G 5(E). If we have a look at the difference 
quotient from the right side, we get with Lemma 4.3 that 

dt 
U(t,t0)f(x)= lim 

U(t + h,t0)-U(t,t0) 

h 
f(x) 

= lim 
U(t + h,t)-U{t,i) 

h 
U(t,t0)f(x). 

Hence it is left to show that 

lim 
/ i \0 

U(t + fe, t)k{x) - U(t, t)k(x) 

h 
= H(t)k(x), 

for k = U(t, to)f. Note that 

(4.7) 

1 T, 

lim -E 
h\o h 

exp I —i 
*t+h-t 

0 
Vg yt-\-h—s, x-\-y/iBsJ ds I k(x+ViB^j-k(x+ViBo^j 

= lim E 
h\0 

1 exp 
h — iJ Vg(t + h — s,x + \fiB^jds k(x + ViBh^j ~-k(x + V~iBh^j 

+ lim E \k(x + ViBh) - \k(x + V~iB0) 
/ i \ o h V / h V / 

The integrand of the first summand yields 

lim - I exp I 
h\oh\ ] 

- i J Vg(t + h- SiX + yfiBs^dsj - 1 \ k[x + ViBh) 
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62 MARTIN GROTHAUS, LUDWIG STREIT & ANNA VOGEL 

= -iVg(^1x + yfiB^k(^x + \TiB^j = -iVg{t,x)k(x). 

Hence by Assumption 4.1 (ii), the mean value theorem and Lebesgue dominated 
convergence 

lim E 
/i\0 

1 

h 
exp — i f Vg(t + h - s,x + V~iBsJds \ - l\k(x + y/ÏBfS) = -iVg(t,X)k(x). 

Moreover we know by Remark 4.2 and Assumption 4.1 (ii) that i£ j fc(x + \ / iB t ) j solves 

the free Schrodinger equation, hence 

lim E k(x + y/ÏBh) - k(x + >/lB 0)] = -^Ak(x 

Similar with 

d_ 

dt 
U(t,to)f(x) - lim 

h\0 

U(t-h,tQ)-U(t,t0) 

h •m 
= lim 

h\0 

U(t - h , t - h ) - U(t, t - h) 

h 
U{t-h,t0)f{x) 

one can show the same for the difference quotient from the left side. 

5. General construction of the Feynman integrand 

Of course one is interested in the Feynman integrand IyQ for a general class of 
potentials VQ : Q —• C, where M \ Q is of measure zero, having an analytic contin­
uation to 2). I.e., we are interested in the Feynman integrand corresponding to the 
Hamiltonian 

H=~A + V0(q), 

where q is the position operator, i.e., 

H<p{x) = —¿&<p(x) + Vo(x)(p(x), x G 0, 

for suitable (p : R —• R (see the introduction for a comprehensive list of references). 
In all cases it turned out that for a test function g G .S(R) and 0 < to < t < T we 
have that 

(5.1) ( T / V o ) ( 3 ) = exp - gll^IwHI + ig(t)x - ig(t0)x0 K$(x,t\x0,to), 

where KyJ(x, t\xo, to) denotes the Green's function corresponding to the potential VG 

(see [8] for a justification of (5.1) under natural assumptions on Iv0)- This leads us 
to the following definition (see e.g. [6]). 
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F E Y N M A N INTEGRALS AS HIDA DISTRIBUTIONS 6 3 

Definition 5.1. — Let VQ : 2) —• C be an analytic potential, f : C —• C an analytic 
initial state, VG, g G 5(R) , as in (3.2), and(p : R —> R, Bore/ measurable, bounded with 
compact support. Assume that VQ, VG and f fulfill Assumption 3.1 and Assumption 
4.1. Then by Theorem 3.3 one has that for allO <to <t <T, the function i^,t,/,t0 

exists and forms a U-functional. Moreover by Theorem 4-4 it follows that for all 
xe<2> and allO <t0<t<T 

Ug(t,t0)f(x) = E exp - i j Vg(s,x + ViB^ds f(x + ViBt-tQ} 

exists and solves the Schrodinger equation (4-4) corresponding to the Hamiltonian 

H{t) = ~A + Vo(q)+g(t)q, 

for all g G 5 (R) . Then by Theorem 2.2 we define the Feynman integrand 

Iv0,<p,f : = T 1 F ^ t t t o G (S)'. 

Definition 5.2. — Again let V0 : 2) —• C be an analytic potential, f : C —> C an 
analytic initial state, VG, g G S(M), as in (3.2) and x G 9. Analogously with Theorem 
2.2, Corollary 3.4 and Theorem 4-4 w e define the Feynman integrand 

J v 0 f W := T 1 F 6 x t t , f , t 0 £ (SY-

Remark 5.3. — Note that the Green's function KyJ(x, t\xo, to), if it exists, is the in­
tegral kernel of the operator Ug{t,to)-

6. Examples 

To show the existence of the Feynman integrand for concrete examples one only 
has to verify Assumption 3.1 and 4.1. In this section we look at analytic potentials 
Vo which are already considered in [4]. First we introduce the set of initial states / . 
For m G N we choose the function 

(6.1) 

fm : C - • C 

z 1—• ( 2 m m ! ) - * ( - l ) m 7 r - M * 2 
d_ 
dz 

m 
e-z2 

Note that the set of functions given by the restrictions of / m , m G N, to R are the 
Hermite functions, whose span is a dense subset of L 2 (R) . 

Lemma 6.1. — Let k : R j —• RQ" be a measurable function and B a real-valued Brow-
nian motion, then 

£?[fc(||B||BUp,r)] < 2 
_2_ 

7RT 

, 1/2 

f 
fc(u)e *Tdu 

For the proof see [4, Sec.l, Lem.l]. 
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64 MARTIN GROTHAUS, LUDWIG STREIT & ANNA VOGEL 

Lemma 6,2. — Let fm, m G N, be as in (6.1). Then for all I G N 0 and e > 0 there 
exists a locally bounded measurable function cm,i : C —• R + such that 

/W(z + Viy) <ст,(г)\уГ+1ехр 
f 
1 1 
2 + VTe 

|z| 2 exp E |y|2 
2 / o r all z e C, y e M, 

where fm denotes the l-th derivative of f. 

6.1. The Feynman integrand for polynomial potentials. — Here for n G N 0 

we have a look at the potential 

(6.2) 

V0 : C - » C 

z i • ( - l ) " + 1 a 4 n + 2 2 4 n + 2 4 
4 n + l 

j=1 
ajzj, 

for ao , . . . , ^4n+i £ C and a 4 n + 2 > 0. If we have a look at the function 

y i-> -zFp (t, x + v7y) 

for g G S'(R), a: G C and t G [0,T], then it is easy to see that the term of highest 
order of the real part is given by — a 4 n + 2 2 / 4 n + 2 - So it follows that for all compact sets 
K C C there exists a constant Ck > 0 such that 

(6.3) sup sup sup 
zeKte[o,T] yeR 

exp [\g(t)\(\z\ + \y\)-iv0 z + \Tiy <CK 

Hence the function 

(6.4) u i—> exp — i f Vg(s,z + \TiBs(uj)}ds 

is bounded uniformly in 0 < t < T and locally uniformly in z G C. 

Theorem6.3. — Let 0 < T < oo, VQ as in (6.2) and fm, m G N, as in (6.1). Then it 
is possible to define the corresponding Feynman integrand Iv0,<p,fm> <P Borel measur­
able, bounded with compact support, and Iv0,6xtfm> x € R, as in Definition 5.1 and 
Definition 5.2, respectively. 

Proof. — As discussed above VQ and fm are analytic. Moreover with Lemma 6.1 and 

kZìi : R+ R+ 

(6.5) w c m , z ( z )u m _ M exp 
1 1 

2 + VTe 
M 2 exp - i r 

,2 > 

/ G No, we get that 

(6.6) 

E exp 
'*||B|| S

2

U P,T 

2 
fm[z + ViBt)\ < E exp 'e||B||?„ p >r' 

2 
fc,,o(||B|Upfr) < oo, 
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FEYNMAN INTEGRALS AS HIDA DISTRIBUTIONS 65 

for 0 < £ < z G C and c m > ; as in Lemma 6.2. If we multiply the integrand in 
(6.6) with the bounded function in (6.4) we still have an integrable function for all 
z G C and all 0 < t < T. So for showing Assumption 3.1 one has to check whether 
there exists a function I : C —> M + whose restriction to R is locally bounded and 
measurable, such that relation (3.1) holds. It is easy to see that this is true for the 
function 

/ : C M + 

Z I - » E exp Rei - i f 
Jo 

^(z + ViB^dt exp 
e | |B | | í u P i T 

2 
I*Z>0(||B||BUP,T) 

The locally boundedness of the restriction of / to R follows from (6.3) and the fact 
that c m ? j is locally bounded. Since 9 = R one can choose an arbitrary <p, Borei 
measurable, bounded with compact support, to apply Theorem 3.3. Moreover if we 
omit the integration the assumptions of Corollary 3.4 are also fulfilled. 

So it is only left to check whether Assumption 4.1 is fulfilled. To show (4.1) again 
by the boundedness of (6.4) one only has to show that 

E1 E2 fm(z + VÏBÎ_r + VÏB2

r_to) < 0 0 , z G С, 0<t0<r<t<T. 

But this follows directly by Lemma 6.1 and Lemma 6.2. To show Assumption 4.1 
(ii) note first that differentiation and integration in (4.3) can be interchanged since 
the integrand is analytic and its derivatives are integrable. Since V is polynomial, 
using the functions kz$, kz¿ and kz^ see (6.5), Lemma 6.1 and Lemma 6.2 one can 
show a estimate similar to (6.6) for (4.2) and (4.3), respectively. Hence they are 
integrable. • 

Remark 6.4. — For n = 0 we are not dealing with the harmonic oscillator. Neverthe­
less it is possible to handle a potential of the form 

x •—• clq - J - a\x + a2X2, 

for ao,ai € C and a<z 6 R such that a<i < In this case the function in (6.4) might 
be unbounded. So one has to estimate the potential as in Lemma 6.2, separately. 

6.2. Non-perturbative accessible potentials. — In this section 9 = R \ { 6 } , 
b £ R. We first consider analytic potentials of the form 

V0 : 0 C 

(6.7) z I—• exp (log(a) -
n 

2 
iog((z-b)2)] 

where n £ N, a € C and b G R. Note that for x € 0 one has that V^a;) = a 
\x-b\n 
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Lemma 6.5. — Let VQ be defined as in (6.7). Then VQ is analytic on 2) and for all 
z G 2), z = x + \piy, x G 0, y G R, and allO<t<T we get that 

| v 0 ( * + >/iBi)| = | a l exp I - | l o g ( ( z - 6 - f ^ ) 2 ) | < |a| exp 
n i - 2 log 

( x - 6 ) 2 > 

2 

For the proof see [4]. 

Theorem 6.6. — Let 0 < T < 0 0 , 0 = R \ { & } , Vb as in Lemma 6.5 and fm, m G N, as 
in (6.1). Then it is possible to define the corresponding Feynman integrand ivb,¥>,/m> 
if : R \ {6} —* C, Borel measurable, bounded with compact support and Iv0,6x,fm> 
x G R \ {b}, as in Definition 5.1 and Definition 5.2, respectively. 

Proof. — W.l.o.g. we set a = 1 and 6 = 0. Then 9 = R \ { 0 } . So let z G 2), 
z = x + a;G 0, 2/ G R, and 0 < £ < T. Again we have to check Assumption 3.1 
and 4.1. From Lemma 6.5 know that VQ is analytic on 2). 

Now we check whether relation (3.1) is true. From Lemma 6.5 we know that 

exp I — i f 
/0 

V0(z + \TiBs\ds J exp 
e||B||íuPiT 

2 
fmlz + ViBt) 

< exp f £ exp n 

~~ 2 
log 

X2 

2 
exp 

e||B||íuPiT 

2 
| / M ( Z + V Ï B T ) | 

So with 

kz,l : R+0 -> R+0 

(6.8) exp I T exp 
n 

~ 2 
log 

X 2 

2 
cmìi(z)um+l exp 

,2 + v /2s. 
\z\2 e x p ( V ) , 

I 6 No, Lemma 6.1 and Lemma 6.2 we get that 

E exp I — i f Vb (z + \ / ÏB s ids j exp 
£||£|ls2up,T 

2 
|/m(* + V Ï B t ) | 

(6.9) <2 
2 

7rT 

1/2 

exp Texp 
n 

2 
log 

2 

(6.10) 
/•OO 

X / cm >i(*)um + ,exp 
1 1 

2
 + 7Ü 

| z | 2 exp -u 
\2 ) 

e iTdu =: I(z), 

for all z G 2), 0 < £ < 4^ and c m , / as in Lemma 6.2. Again since c m ^ is measurable 
and locally bounded it follows that the restriction of i" to 9 is also measurable and 
locally bounded. Now we check whether Assumption 4.1 is true. Relation (4.1) follows 
by Lemma 6.1, Lemma 6.2 and Lemma 6.5. Again with Lemma 6.1, Lemma 6.2 and 
Lemma 6.5 and the functions kz$, hZi\ and kz$ one can show integrability for (4.2) 
and (4.3), respectively. • 
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Corollary 6.7. — In the same way one can also show the existence of the Feynman 
integrand for potentials of the form 

Vn : 0 -+ C 

(6.11) a 
(z-b)n 

for a G C, b G R and n G N. Moreover one can choose linear combination of the 
potentials given in (6.2),(6.7) and (6.11). 
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