Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents
Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 151-205.
@incollection{AST_2008__322__151_0,
     author = {Mok, Ngaiming},
     title = {Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents},
     booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon},
     editor = {Hijazi Oussama},
     series = {Ast\'erisque},
     pages = {151--205},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {322},
     year = {2008},
     mrnumber = {2521656},
     zbl = {1182.14043},
     language = {en},
     url = {http://www.numdam.org/item/AST_2008__322__151_0/}
}
TY  - CHAP
AU  - Mok, Ngaiming
TI  - Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents
BT  - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon
AU  - Collectif
ED  - Hijazi Oussama
T3  - Astérisque
PY  - 2008
SP  - 151
EP  - 205
IS  - 322
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2008__322__151_0/
LA  - en
ID  - AST_2008__322__151_0
ER  - 
%0 Book Section
%A Mok, Ngaiming
%T Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents
%B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon
%A Collectif
%E Hijazi Oussama
%S Astérisque
%D 2008
%P 151-205
%N 322
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2008__322__151_0/
%G en
%F AST_2008__322__151_0
Mok, Ngaiming. Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents, dans Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 151-205. http://www.numdam.org/item/AST_2008__322__151_0/

[1] W. M. Boothby - "Homogeneous complex contact manifolds", in Proc. Sympos. Pure Math., Vol. III, Amer. Math. Soc, 1961, p. 144-154. | DOI | MR | Zbl

[2] F. Campana & T. Peternell - "Projective manifolds whose tangent bundles are numerically effective", Math. Ann. 289 (1991), p. 169-187. | DOI | EuDML | MR | Zbl

[3] K. Cho, Y. Miyaoka & N. I. Shepherd-Barron - "Characterizations of projective space and applications to complex symplectic manifolds", in Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, 2002, p. 1-88. | MR | Zbl

[4] A. Grothendieck - "Sur la classification des fibrés holomorphes sur la sphère de Riemann", Amer. J. Math. 79 (1957), p. 121-138. | DOI | MR | Zbl

[5] V. Guillemin - "The integrability problem for G-structures", Trans. Amer. Math. Soc. 116 (1965), p. 544-560. | MR | Zbl

[6] J. Hong - "Fano manifolds with geometric structures modeled after homogeneous contact manifolds", Internat. J. Math. 11 (2000), p. 1203-1230. | DOI | MR | Zbl

[7] J. Hong, "Rigidity of smooth Schubert varieties in Hermitian symmetric spaces", Trans. Amer. Math. Soc. 359 (2007), p. 2361-2381. | DOI | MR | Zbl

[8] J. Hong & J.-M. Hwang - "Characterization of the rational homogeneous manifold associated to a long simple root by its variety of minimal rational tangents", preprint. | MR | Zbl

[9] J. Hong & N. Mok - "Non-equidimensional Cartan-Fubini extension of holomorphic maps respecting varieties of minimal rational tangents", in preparation.

[10] J.-M. Hwang - "Rigidity of homogeneous contact manifolds under Fano deformation", J. reine angew. Math. 486 (1997), p. 153-163. | EuDML | MR | Zbl

[11] J.-M. Hwang, "Geometry of minimal rational curves on Fano manifolds", in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, p. 335-393. | MR | Zbl

[12] J.-M. Hwang, "Rigidity of rational homogeneous spaces", in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zurich, 2006, p. 613-626. | MR | Zbl

[13] J.-M. Hwang, "Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1", Ann. Inst. Fourier (Grenoble) 57 (2007), p. 815-823. | DOI | EuDML | Numdam | MR | Zbl

[14] J.-M. Hwang & N. Mok - "Uniruled projective manifolds with irreducible reductive G-structures", J. reine angew. Math. 490 (1997), p. 55-64. | EuDML | MR | Zbl

[15] J.-M. Hwang & N. Mok, "Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation", Invent. Math. 131 (1998), p. 393-418. | DOI | MR | Zbl

[16] J.-M. Hwang & N. Mok, "Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds", Invent. Math. 136 (1999), p. 209-231. | DOI | MR | Zbl

[17] J.-M. Hwang & N. Mok, "Varieties of minimal rational tangents on uniruled projective manifolds", in Several complex variables (Berkeley, CA, 1995-1996), Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, 1999, p. 351-389. | MR | Zbl

[18] J.-M. Hwang & N. Mok, "Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1", J. Math. Pures Appl. 80 (2001), p. 563-575. | DOI | MR | Zbl

[19] J.-M. Hwang & N. Mok, "Deformation rigidity of the rational homogeneous space associated to a long simple root", Ann. Sci. École Norm. Sup. 35 (2002), p. 173-184. | DOI | EuDML | Numdam | MR | Zbl

[20] J.-M. Hwang & N. Mok, "Finite morphisms onto Fano manifolds of Picard number 1 which have rational curves with trivial normal bundles", J. Algebraic Geom. 12 (2003), p. 627-651. | DOI | MR | Zbl

[21] J.-M. Hwang & N. Mok, "Birationality of the tangent map for minimal rational curves", Asian J. Math. 8 (2004), p. 51-63. | DOI | MR | Zbl

[22] J.-M. Hwang & N. Mok, "Deformation rigidity of the 20-dimensional F 4 -homogeneous space associated to a short root", in Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, 2004, p. 37-58. | DOI | MR | Zbl

[23] J.-M. Hwang & N. Mok, "Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation", Invent. Math. 160 (2005), p. 591-645. | DOI | MR | Zbl

[24] J.-M. Hwang & S. Ramanan - "Hecke curves and Hitchin discriminant", Ann. Sci. École Norm. Sup. 37 (2004), p. 801-817. | DOI | EuDML | Numdam | MR | Zbl

[25] S. Kebekus - "Lines on contact manifolds", J. reine angew. Math. 539 (2001), p. 167-177. | MR | Zbl

[26] S. Kebekus, "Families of singular rational curves", J. Algebraic Geom. 11 (2002), p. 245-256. | DOI | MR | Zbl

[27] S. Kebekus, T. Peternell, A. J. Sommese & J. A. Wiśniewski - "Projective contact manifolds", Invent. Math. 142 (2000), p. 1-15. | DOI | MR | Zbl

[28] S. Kobayashi & T. Ochiai - "Holomorphic structures modeled after compact Hermitian symmetric spaces", in Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, Birkhäuser, 1981, p. 207-222. | DOI | MR | Zbl

[29] J. Kollár - Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32, Springer, 1996. | MR | Zbl

[30] J. Kollár, Y. Miyaoka & S. Mori - "Rational connectedness and boundedness of Fano manifolds", J. Differential Geom. 36 (1992), p. 765-779. | DOI | MR | Zbl

[31] C.-H. Lau - "Holomorphic maps from rational homogeneous manifolds onto projective manifolds", to appear in J. Alg. Geom. | MR | Zbl

[32] R. Lazarsfeld - "Some applications of the theory of positive vector bundles", in Complete intersections (Acireale, 1983), Lecture Notes in Math., vol. 1092, Springer, 1984, p. 29-61. | DOI | MR | Zbl

[33] C. Lebrun - "A rigidity theorem for quaternionic-Kähler manifolds", Proc. Amer. Math. Soc. 103 (1988), p. 1205-1208. | MR | Zbl

[34] C. Lebrun, "Fano manifolds, contact structures, and quaternionic geometry", Internat. J. Math. 6 (1995), p. 419-437. | DOI | MR | Zbl

[35] Y. Matsushima & A. Morimoto - "Sur certains espaces fibrés holomorphes sur une variété de Stein", Bull Soc. Math. France 88 (1960), p. 137-155. | DOI | EuDML | Numdam | MR | Zbl

[36] Y. Miyaoka - "Geometry of rational curves on varieties", in Geometry of higher-dimensional algebraic varieties, Birkhäuser, 1997, p. 1-127. | Zbl

[37] Y. Miyaoka, "Numerical characterisations of hyperquadrics", in Complex analysis in several variables - Memorial Conference of Kiyoshi Oka's Centennial Birthday, Adv. Stud. Pure Math., vol. 42, Math. Soc. Japan, 2004, p. 209-235. | DOI | MR | Zbl

[38] Y. Miyaoka & S. Mori - "A numerical criterion for uniruledness", Ann. of Math. 124 (1986), p. 65-69. | DOI | MR | Zbl

[39] N. Mok - "The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature", J. Differential Geom. 27 (1988), p. 179-214. | DOI | MR | Zbl

[40] N. Mok, "G-structures on irreducible Hermitian symmetric spaces of rank 2 and deformation rigidity", in Complex geometric analysis in Pohang (1997), Contemp. Math., vol. 222, Amer. Math. Soc, 1999, p. 81-107. | DOI | MR | Zbl

[41] N. Mok, "On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents", Trans. Amer. Math. Soc. 354 (2002), p. 2639-2658. | DOI | MR | Zbl

[42] N. Mok, "Characterization of standard embeddings between complex Grassmannians by means of varieties of minimal rational tangents", Sci. China Ser. A 51 (2008), p. 660-684. | DOI | MR | Zbl

[43] N. Mok, "Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents", AMS/IP Studies in Advanced Mathematics 48 (2008), p. 41-61. | MR | Zbl

[44] N. Mok & I. H. Tsai - "Rigidity of convex realizations of irreducible bounded symmetric domains of rank 2", J. reine angew. Math. 431 (1992), p. 91-122. | EuDML | MR | Zbl

[45] S. Mori - "Projective manifolds with ample tangent bundles", Ann. of Math. 110 (1979), p. 593-606. | DOI | MR | Zbl

[46] Y. A. Neretin - "Conformal geometry of symmetric spaces, and generalized linear-fractional Kreĭn-Smuľyan mappings", Mat. Sb. 190 (1999), p. 93-122. | MR | Zbl

[47] T. Ochiai - "Geometry associated with semisimple flat homogeneous spaces", Trans. Amer. Math. Soc. 152 (1970), p. 159-193. | DOI | MR | Zbl

[48] J-P. Serre - Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam, 1966. | MR | Zbl

[49] I. M. Singer & S. Sternberg - "The infinite groups of Lie and Cartan. I. The transitive groups", J. Analyse Math. 15 (1965), p. 1-114. | DOI | MR | Zbl

[50] Y. T. Siu & S. T. Yau - "Compact Kähler manifolds of positive bisectional curvature", Invent. Math. 59 (1980), p. 189-204. | DOI | EuDML | MR | Zbl

[51] K. Yamaguchi - "Differential systems associated with simple graded Lie algebras", in Progress in differential geometry, Adv. Stud. Pure Math., vol. 22, Math. Soc. Japan, 1993, p. 413-494. | DOI | MR | Zbl

[52] F. L. Zak - Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, Amer. Math. Soc., 1993. | MR | Zbl

[53] F. Zheng - "On semi-positive threefolds", Ph.D. Thesis, Harvard University, 1990.