@article{ASENS_2002_4_35_2_173_0, author = {Hwang, Jun-Muk and Mok, Ngaiming}, title = {Deformation rigidity of the rational homogeneous space associated to a long simple root}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {173--184}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {2}, year = {2002}, doi = {10.1016/s0012-9593(02)01087-x}, mrnumber = {1914930}, zbl = {1008.32012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/} }
TY - JOUR AU - Hwang, Jun-Muk AU - Mok, Ngaiming TI - Deformation rigidity of the rational homogeneous space associated to a long simple root JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 173 EP - 184 VL - 35 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/ DO - 10.1016/s0012-9593(02)01087-x LA - en ID - ASENS_2002_4_35_2_173_0 ER -
%0 Journal Article %A Hwang, Jun-Muk %A Mok, Ngaiming %T Deformation rigidity of the rational homogeneous space associated to a long simple root %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 173-184 %V 35 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/ %R 10.1016/s0012-9593(02)01087-x %G en %F ASENS_2002_4_35_2_173_0
Hwang, Jun-Muk; Mok, Ngaiming. Deformation rigidity of the rational homogeneous space associated to a long simple root. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 2, pp. 173-184. doi : 10.1016/s0012-9593(02)01087-x. http://www.numdam.org/articles/10.1016/s0012-9593(02)01087-x/
[1] Groupes et Algèbres de Lie, Ch. 7-8, Hermann, Paris, 1975. | MR
,[2] Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957) 121-138. | MR | Zbl
,[3] Rigidity of homogeneous contact manifolds under Fano deformation, J. Reine Angew. Math. 486 (1997) 153-163. | MR | Zbl
,[4] Stability of tangent bundles of low dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998) 599-606. | MR | Zbl
,[5] Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math. 131 (1998) 393-418. | MR | Zbl
, ,[6] Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds, Invent. Math. 136 (1999) 209-231. | MR | Zbl
, ,[7] Varieties of minimal rational tangents on uniruled projective manifolds, in: , (Eds.), Several Complex Variables, MSRI Publications, 37, Cambridge University Press, 2000, pp. 351-389. | MR | Zbl
, ,[8] Introduction to Lie Algebras and Representation Theory, Grad. Texts Math., 9, Springer, 1972. | MR | Zbl
,[9] Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. | MR | Zbl
,[10] On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963) 79-94. | MR | Zbl
,[11] Rational Curves on Algebraic Varieties, Ergebnisse Math. 3 Folge, 32, Springer-Verlag, 1996. | MR | Zbl
,[12] Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Math., 6, World Scientific, 1989. | MR | Zbl
,[13] Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993) 263-347. | MR | Zbl
,[14] Complex Semisimple Lie Algebras, Springer-Verlag, 1987. | MR | Zbl
,[15] On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979) 23-84. | MR | Zbl
,[16] Differential systems associated with simple graded Lie algebras, in: Progress in Differential Geometry, Adv. Study Pure Math., 22, 1993, pp. 413-494. | MR | Zbl
,Cité par Sources :