Some recent applications of S-unit equations
Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 17-38.
@incollection{AST_1992__209__17_0,
     author = {Gy\"ory, K\'alm\'an},
     title = {Some recent applications of $S$-unit equations},
     booktitle = {Journ\'ees arithm\'etiques de Gen\`eve - 9-13 septembre 1991},
     editor = {Coray D. F. and P\'etermann Y.-F. S},
     series = {Ast\'erisque},
     pages = {17--38},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {209},
     year = {1992},
     mrnumber = {1211001},
     zbl = {0792.11005},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__209__17_0/}
}
TY  - CHAP
AU  - Györy, Kálmán
TI  - Some recent applications of $S$-unit equations
BT  - Journées arithmétiques de Genève - 9-13 septembre 1991
AU  - Collectif
ED  - Coray D. F.
ED  - Pétermann Y.-F. S
T3  - Astérisque
PY  - 1992
SP  - 17
EP  - 38
IS  - 209
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1992__209__17_0/
LA  - en
ID  - AST_1992__209__17_0
ER  - 
%0 Book Section
%A Györy, Kálmán
%T Some recent applications of $S$-unit equations
%B Journées arithmétiques de Genève - 9-13 septembre 1991
%A Collectif
%E Coray D. F.
%E Pétermann Y.-F. S
%S Astérisque
%D 1992
%P 17-38
%N 209
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1992__209__17_0/
%G en
%F AST_1992__209__17_0
Györy, Kálmán. Some recent applications of $S$-unit equations, dans Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 17-38. http://www.numdam.org/item/AST_1992__209__17_0/

[1] A. Baker, Transcendental Number Theory, 3rd ed., Cambridge University Press, 1990. | MR | Zbl

[2] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc.London Math.Soc. 25(1972), 385-394. | DOI | MR | Zbl

[3] J. H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53(1984), 225-244. | EuDML | Numdam | MR | Zbl

[4] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent.Math. 75(1984), 561-584. | DOI | EuDML | MR | Zbl

[5] J. H. Evertse, Decomposable form equations with a small linear scattering, to appear. | MR | Zbl

[6] J. H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50(1988), 357-379. | DOI | EuDML | MR | Zbl

[7] J. H. Evertse and K. Győry, On the numbers of solutions of weighted unit equations, Compositio Math. 66(1988), 329-354. | EuDML | Numdam | MR | Zbl

[8] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79(1991), 169-204. | EuDML | Numdam | MR | Zbl

[9] J. H. Evertse and K. Győry, Effective finiteness theorems for decomposable forms of given discriminant, Acta Arith., to appear. | EuDML | MR | Zbl

[10] J. H. Evertse and K. Győry, Discriminants of decomposable forms, to appear. | MR | Zbl

[11] J. H. Evertse and K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, New Advances in Transcendence Theory (A. Baker ed.), pp.110-174. Cambridge University Press, 1988. | DOI | MR | Zbl

[12] J. H. Evertse and K. Győry, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent.Math. 92(1988), 461-477. | DOI | EuDML | MR | Zbl

[13] I. M. Gelfand, A. V. Zelevinsky and M. M. Karpanov, On discriminants of polynomials of several variables (Russian), Functional Anal.and Appl. 24(1990), 1-4. | DOI | MR | Zbl

[14] K. Győry, On the irreducibility of a class of polynomials I, Publ.Math.Debrecen 18(1971), 289-307; | Zbl

K. Győry, On the irreducibility of a class of polynomials II, Publ.Math.Debrecen 19(1972), 293-326 | Zbl

K. Győry, On the irreducibility of a class of polynomials III, J.Number Theory 15 (1982), 164-181 to appear. | DOI | MR | Zbl

[15] K. Győry, On polynomials with integer coefficients and given discriminant I, Acta Arith. 23 (1973), 419-426 | EuDML | MR | Zbl

K. Győry, On polynomials with integer coefficients and given discriminant II, Publ.Math.Debrecen 21 (1974), 125-144 | Zbl

K. Győry, On polynomials with integer coefficients and given discriminant III, Publ.Math.Debrecen 23(1976), 141-165 | Zbl

K. Győry, On polynomials with integer coefficients and given discriminant IV, Publ.Math.Debrecen 25(1978), 155-167 | MR | Zbl

K. Győry, On polynomials with integer coefficients and given discriminant V, Acta Math. Hungar. 32 (1978), 175-190. | MR | Zbl

[16] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment.Math.Helv. 54 (1979), 583-600. | DOI | EuDML | MR | Zbl

[17] K. Győry, On certain graphs composed of algebraic integers of a number field and their applications I, Publ.Math.Debrecen 27(1980), 229-242. | MR | Zbl

[18] K. Győry, On arithmetic graphs associated with integral domains I, in " A Tribute to Paul Erdös" (A. Baker, B. Bollobas, A. Hajnal eds.), Cambridge University Press, 1990, pp.207-222. | DOI | MR | Zbl

K. Győry, On arithmetic graphs associated with integral domains II in "Sets, Graphs and Numbers", Coll.Math.Soc. J.Bolyai 59, North-Holland Publ.Comp., to appear. | MR | Zbl

[19] K. Győry, Upper bounds for the numbers of solutions of unit equations in two unknowns, to appear. | MR | Zbl

[20] K. Győry, On the numbers of families of solutions of decomposable form equation systems, to appear. | MR | Zbl

[21] K. Győry and A. Schinzel, On a conjecture of Posner and Rumsey, in preparation. | Zbl

[22] L. Hajdú, Some applications of the effective Dirichlet unit theorem, Publ. Math. Debrecen, to appear.

[23] Ch. Hermite, Sur l'introduction des variables continues dans la théorie des nombres, J. reine Angew. Math. 41 (1851), 191-216. | DOI | EuDML | MR | Zbl

[24] J. L. Lagrange, Recherches d'arithmétique, Nouv.Mém.Acad.Berlin, 1773, pp.265-312.

J. L. Lagrange, Recherches d'arithmétique, Oeuvres, III, pp.693-758.

[25] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327. | DOI | EuDML | MR | Zbl

[26] A. J. Van Der Poorten and H. P. Schlickewei, The growth conditions for recurrence sequences, Report 82.0041, Macquarie University, N.S.W.Australia, 1982.

[27] A. J. Van Der Poorten and H. P. Schlickewei, Additive relations in fields, J.Austral.Math.Soc.(Series A) 51(1991), 154-170. | DOI | MR | Zbl

[28] E. C. Posner and H. Rumsey, Jr., Polynomials that divide infinitely many trinomials, Michigan Math.J. 12(1965), 339-348. | DOI | MR | Zbl

[29] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt Theorem, Archiv Math. 29 (1977), 267-270. | DOI | MR | Zbl

[30] H. P. Schlickewei, On norm form equations, J.Number Theory 9 (1977), 370-380. | DOI | MR | Zbl

[31] H. P. Schlickewei, S-unit equations over number fields, Invent. Math. 102 (1990), 95-107. | DOI | EuDML | MR | Zbl

[32] H. P. Schlickewei, The quantitative subspace theorem for number fields, to appear. | Numdam | MR | Zbl

[33] W. M. Schmidt, Linearformen mit algebraischen Koeffizienten II, Math. Ann. 191(1971), 1-20. | DOI | EuDML | MR | Zbl

[34] W. M. Schmidt, Norm form equations, Annals of Math. 96(1972), 526-551. | DOI | MR | Zbl

[35] W. M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69(1989), 121-173. | EuDML | Numdam | MR | Zbl

[36] W. M. Schmidt, The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317(1990), 197-227. | DOI | MR | Zbl

[37] T. N. Shorey and R. Tljdeman, Exponential diophantine equations, Cambridge University Press, 1986. | MR | Zbl