@article{CM_1991__79_2_169_0, author = {Evertse, J. H. and Gyory, K.}, title = {Effective finiteness results for binary forms with given discriminant}, journal = {Compositio Mathematica}, pages = {169--204}, publisher = {Kluwer Academic Publishers}, volume = {79}, number = {2}, year = {1991}, mrnumber = {1117339}, zbl = {0746.11020}, language = {en}, url = {http://www.numdam.org/item/CM_1991__79_2_169_0/} }
TY - JOUR AU - Evertse, J. H. AU - Gyory, K. TI - Effective finiteness results for binary forms with given discriminant JO - Compositio Mathematica PY - 1991 SP - 169 EP - 204 VL - 79 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1991__79_2_169_0/ LA - en ID - CM_1991__79_2_169_0 ER -
Evertse, J. H.; Gyory, K. Effective finiteness results for binary forms with given discriminant. Compositio Mathematica, Tome 79 (1991) no. 2, pp. 169-204. http://www.numdam.org/item/CM_1991__79_2_169_0/
[1] Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173-191. | MR | Zbl
,[2] Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972), 385-394. | MR | Zbl
and ,[3] An effective p-adic analogue of a theorem of Thue, Acta Arith. 15 (1969), 275-305. | EuDML | MR | Zbl
,[4] On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | EuDML | MR | Zbl
,[5] Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989), 60-80. | EuDML | MR | Zbl
and ,[6] Disquisitiones Arithmeticae, 1801 (German translation, 2nd edn, reprinted, Chelsea Publ. New York, 1981).
,[7] Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426. | EuDML | MR | Zbl
,[8] Sur les polynômes à coefficients entiers et de discriminant donné. II. Publ. Math. Debrecen 21 (1974), 125-144. | MR | Zbl
,[9] On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. | MR | Zbl
,[10] On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helvetici 54 (1979), 583-600. | EuDML | MR | Zbl
,[11] On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 22-23 (1979-80), 225-233. | MR | Zbl
,[12] Effective finiteness theorems for Diophantine problems and their applications, Academic Doctor's thesis, Debrecen, 1983 (in Hungarian).
,[13] Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346 (1984), 54-100. | EuDML | MR | Zbl
,[14] On discriminant form and index form equations, Studia Scient. Math. Hung. 12 (1977), 47-60. | MR | Zbl
and ,[15] Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41 (1851), 191-216. | EuDML | MR | Zbl
,[16] Sur les formes quadratiques, Math. Ann. 6 (1873), 366-389. | EuDML | JFM | MR
and ,[17] Recherches d'arithmétique, Nouv. Mém. Acad. Berlin, 1773, 265-312, Oeuvres, III, 693-758.
,[18] Algebraic Number Theory, Addison-Wesley Publ., Reading, Mass., 1970. | MR | Zbl
,[19] Fundamentals of Diophantine Geometry, Springer Verlag, New York, 1983. | MR | Zbl
,[20] Representation of integers by binary forms, Acta. Arith. 6 (1961), 333-363. | EuDML | MR | Zbl
and ,[21] Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68 (1937), 109-144. | JFM | Zbl
,[22] Sur les forms quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406. | EuDML | JFM
,[23] On numbers represented by binary cubic forms, Proc. London Math. Soc. 48 (1945), 198-228. | MR | Zbl
,[24] (Under the pseudonym X), The integer solutions of the equation y2 = axn + bxn-1 + ... +k, J. London Math. Soc. 1 (1926), 66-68. | JFM
[25] Abschätzung von Einheiten, Nachr. Göttingen Math. Phys. Kl. (1969), 71-86. | MR | Zbl
,[26] Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152. | EuDML | MR | Zbl
,[27] Algebraic Number Theory, McGraw-Hill, New York, 1963. | MR | Zbl
,[28] Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380. | EuDML | MR | Zbl
,