Effective finiteness results for binary forms with given discriminant
Compositio Mathematica, Tome 79 (1991) no. 2, pp. 169-204.
@article{CM_1991__79_2_169_0,
     author = {Evertse, J. H. and Gyory, K.},
     title = {Effective finiteness results for binary forms with given discriminant},
     journal = {Compositio Mathematica},
     pages = {169--204},
     publisher = {Kluwer Academic Publishers},
     volume = {79},
     number = {2},
     year = {1991},
     mrnumber = {1117339},
     zbl = {0746.11020},
     language = {en},
     url = {http://www.numdam.org/item/CM_1991__79_2_169_0/}
}
TY  - JOUR
AU  - Evertse, J. H.
AU  - Gyory, K.
TI  - Effective finiteness results for binary forms with given discriminant
JO  - Compositio Mathematica
PY  - 1991
SP  - 169
EP  - 204
VL  - 79
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1991__79_2_169_0/
LA  - en
ID  - CM_1991__79_2_169_0
ER  - 
%0 Journal Article
%A Evertse, J. H.
%A Gyory, K.
%T Effective finiteness results for binary forms with given discriminant
%J Compositio Mathematica
%D 1991
%P 169-204
%V 79
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1991__79_2_169_0/
%G en
%F CM_1991__79_2_169_0
Evertse, J. H.; Gyory, K. Effective finiteness results for binary forms with given discriminant. Compositio Mathematica, Tome 79 (1991) no. 2, pp. 169-204. http://www.numdam.org/item/CM_1991__79_2_169_0/

[1] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173-191. | MR | Zbl

[2] B.J. Birch and J.R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972), 385-394. | MR | Zbl

[3] J. Coates, An effective p-adic analogue of a theorem of Thue, Acta Arith. 15 (1969), 275-305. | EuDML | MR | Zbl

[4] J.H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | EuDML | MR | Zbl

[5] J.H. Evertse and K. Györy, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989), 60-80. | EuDML | MR | Zbl

[6] C.F. Gauss, Disquisitiones Arithmeticae, 1801 (German translation, 2nd edn, reprinted, Chelsea Publ. New York, 1981).

[7] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426. | EuDML | MR | Zbl

[8] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné. II. Publ. Math. Debrecen 21 (1974), 125-144. | MR | Zbl

[9] K. Györy, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. | MR | Zbl

[10] K. Györy, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helvetici 54 (1979), 583-600. | EuDML | MR | Zbl

[11] K. Györy, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 22-23 (1979-80), 225-233. | MR | Zbl

[12] K. Györy, Effective finiteness theorems for Diophantine problems and their applications, Academic Doctor's thesis, Debrecen, 1983 (in Hungarian).

[13] K. Györy, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346 (1984), 54-100. | EuDML | MR | Zbl

[14] K. Györy and Z.Z. Papp, On discriminant form and index form equations, Studia Scient. Math. Hung. 12 (1977), 47-60. | MR | Zbl

[15] C. Hermite, Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41 (1851), 191-216. | EuDML | MR | Zbl

[16] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873), 366-389. | EuDML | JFM | MR

[17] J.L. Lagrange, Recherches d'arithmétique, Nouv. Mém. Acad. Berlin, 1773, 265-312, Oeuvres, III, 693-758.

[18] S. Lang, Algebraic Number Theory, Addison-Wesley Publ., Reading, Mass., 1970. | MR | Zbl

[19] S. Lang, Fundamentals of Diophantine Geometry, Springer Verlag, New York, 1983. | MR | Zbl

[20] D.J. Lewis and K. Mahler, Representation of integers by binary forms, Acta. Arith. 6 (1961), 333-363. | EuDML | MR | Zbl

[21] K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68 (1937), 109-144. | JFM | Zbl

[22] A. Markoff, Sur les forms quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406. | EuDML | JFM

[23] L.J. Mordell, On numbers represented by binary cubic forms, Proc. London Math. Soc. 48 (1945), 198-228. | MR | Zbl

[24] C.L. Siegel (Under the pseudonym X), The integer solutions of the equation y2 = axn + bxn-1 + ... +k, J. London Math. Soc. 1 (1926), 66-68. | JFM

[25] C.L. Siegel, Abschätzung von Einheiten, Nachr. Göttingen Math. Phys. Kl. (1969), 71-86. | MR | Zbl

[26] H.M. Stark, Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152. | EuDML | MR | Zbl

[27] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. | MR | Zbl

[28] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380. | EuDML | MR | Zbl