Solutions of the Riccati equation with and a bounded function are studied in an open set . It is shown that the solutions are local quasiminimizers whenever for and for . This extends the results in the author’s earlier paper [8] where the case was studied. Continuous solutions in the range are also local quasiminimizers. Examples show that the results are quite sharp.
@article{ASNSP_2013_5_12_4_823_0, author = {Martio, Olli}, title = {Quasiminimizing properties of solutions to {Riccati} type equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {823--832}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {4}, year = {2013}, mrnumber = {3184570}, zbl = {1321.35025}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_4_823_0/} }
TY - JOUR AU - Martio, Olli TI - Quasiminimizing properties of solutions to Riccati type equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 823 EP - 832 VL - 12 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_4_823_0/ LA - en ID - ASNSP_2013_5_12_4_823_0 ER -
%0 Journal Article %A Martio, Olli %T Quasiminimizing properties of solutions to Riccati type equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 823-832 %V 12 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_4_823_0/ %G en %F ASNSP_2013_5_12_4_823_0
Martio, Olli. Quasiminimizing properties of solutions to Riccati type equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 4, pp. 823-832. http://www.numdam.org/item/ASNSP_2013_5_12_4_823_0/
[1] F. Della Pietra, “Existence Results for Some Classes of Nonlinear Elliptic Problems”, Doctoral thesis, Universita degli Studi di Napoli “Federico II”, 2008, http:/www.fedoa.unina.it/2014/1/Della-Pietra-Scienze-Matematiche.pdf
[2] M. Giaquinta, “Introduction to Regularity Theory of Nonlinear Elliptic Systems”, Birkhäuser Verlag, Basel, 1993. | MR | Zbl
[3] M. Giaquinta and E. Giusti, Quasiminima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 79–104. | EuDML | Numdam | MR | Zbl
[4] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, second edition, Springer, 1983. | MR | Zbl
[5] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Dover, 2006. | MR | Zbl
[6] T. Kilpeläinen, T. Kuusi and A. Tuhola-Kujanpää, Superharmonic functions are locally renormalized solutions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 775–795. | Numdam | MR | Zbl
[7] T. Kilpeläinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591–513. | EuDML | Numdam | MR | Zbl
[8] O. Martio, Quasilinear Riccati type equations and quasiminimizers, Adv. Nonlinear Stud. 11 (2011), 473–482. | MR | Zbl
[9] Nguyen Cong Phuc, Quasilinear Riccati type equations with super-critical exponents, Comm. Partial Differential Equations 35 (2010), 1958–1981. | MR | Zbl
[10] A. Tuhola-Kujanpää, A potential theory approach to the equation , Ann. Acad. Sci. Fenn. Math. 35 (2010), 633–640. | MR | Zbl