We show that different notions of solutions to measure data problems involving p-Laplace type operators and nonnegative source measures are locally essentially equivalent. As an application we characterize singular solutions of multidimensional Riccati type partial differential equations.
@article{AIHPC_2011__28_6_775_0, author = {Kilpel\"ainen, Tero and Kuusi, Tuomo and Tuhola-Kujanp\"a\"a, Anna}, title = {Superharmonic functions are locally renormalized solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {775--795}, publisher = {Elsevier}, volume = {28}, number = {6}, year = {2011}, doi = {10.1016/j.anihpc.2011.03.004}, mrnumber = {2859927}, zbl = {1234.35121}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.004/} }
TY - JOUR AU - Kilpeläinen, Tero AU - Kuusi, Tuomo AU - Tuhola-Kujanpää, Anna TI - Superharmonic functions are locally renormalized solutions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 775 EP - 795 VL - 28 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.004/ DO - 10.1016/j.anihpc.2011.03.004 LA - en ID - AIHPC_2011__28_6_775_0 ER -
%0 Journal Article %A Kilpeläinen, Tero %A Kuusi, Tuomo %A Tuhola-Kujanpää, Anna %T Superharmonic functions are locally renormalized solutions %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 775-795 %V 28 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.004/ %R 10.1016/j.anihpc.2011.03.004 %G en %F AIHPC_2011__28_6_775_0
Kilpeläinen, Tero; Kuusi, Tuomo; Tuhola-Kujanpää, Anna. Superharmonic functions are locally renormalized solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 775-795. doi : 10.1016/j.anihpc.2011.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.004/
[1] On the connection between two quasilinear elliptic problems with a source terms of order 0 or 1, http://arxiv.org/abs/0811.3292v1 | MR | Zbl
, ,[2] Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 no. 1 (2006), 21-62
, , ,[3] Corrigendum to “Some remarks on elliptic problems with critical growth in the gradient”, J. Differential Equations 246 no. 7 (2009), 2988-2990 | MR | Zbl
, , ,[4] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273 | EuDML | Numdam | MR | Zbl
, , , , , ,[5] Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud. 3 no. 1 (2003), 25-63 | MR | Zbl
,[6] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 no. 1 (1989), 149-169 | MR | Zbl
, ,[7] Approximated solutions of equations with data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4) 170 (1996), 207-240 | MR
,[8] Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. (4) 181 no. 4 (2002), 407-426 | MR | Zbl
, , ,[9] Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 375-396 | EuDML | Numdam | MR | Zbl
, ,[10] Local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. Ser. A: Theory Methods 7 no. 8 (1983), 827-850 | MR | Zbl
,[11] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741-808 | EuDML | Numdam | MR | Zbl
, , , ,[12] Comparison and existence results for classes of nonlinear elliptic equations with general growth in the gradient, Adv. Nonlinear Stud. 7 no. 1 (2007), 31-46 | MR | Zbl
, ,[13] Estimates for blow-up solutions to nonlinear elliptic equations with p-growth in the gradient, Z. Anal. Anwend. 29 no. 2 (2010), 219-234 | MR | Zbl
, , , ,[14] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Ser. A: Theory Methods 42 no. 7 (2000), 1309-1326 | MR | Zbl
, ,[15] Existence and comparison results for quasilinear elliptic equations with critical growth in the gradient, J. Differential Equations 171 no. 1 (2001), 1-23 | MR | Zbl
,[16] Existence results for a class of nonlinear elliptic problems with p-growth in the gradient, Nonlinear Anal. 52 no. 3 (2003), 931-942 | MR | Zbl
, ,[17] Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 no. 1 (1999), 87-120 | MR
, , ,[18] Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 no. 4 (1983), 161-187 | EuDML | Numdam | MR | Zbl
, ,[19] Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Inc., Mineola, NY (2006) | MR | Zbl
, , ,[20] The fundamental solution of nonlinear equations with natural growth terms, http://arxiv.org/abs/1002.4664
, ,[21] Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591-613 | EuDML | Numdam | MR | Zbl
, ,[22] The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161 | MR | Zbl
, ,[23] An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math. vol. 88, Academic Press, New York, London (1980) | MR | Zbl
, ,[24] A note on the Wolff potential estimate for solutions to elliptic equations involving measures, Adv. Calc. Var. 3 (2010), 99-113 | MR | Zbl
, ,[25] P.-L. Lions, F. Murat, Sur les solutions renormalisées dʼéquations elliptiques non linéaires (informal communication).
[26] O. Martio, Quasilinear Riccati type equations and quasiminimizers, preprint 509, Department of Mathematics and Statistics, University of Helsinki, 2010. | MR
[27] Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient, Nonlinear Anal. 64 no. 12 (2006), 2688-2703 | MR | Zbl
,[28] On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996) | MR | Zbl
,[29] Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571-627 | MR | Zbl
,[30] The Calderon–Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007), 195-261 | EuDML | Numdam | MR | Zbl
,[31] Nonlinear aspects of Calderon–Zygmund theory, Jahresber. Dtsch. Math.-Ver. 112 (2010), 159-191 | MR | Zbl
,[32] Gradient potential estimates, J. Europ. Math. Soc. 13 (2011), 459-486 | EuDML | MR | Zbl
,[33] Quasilinear Riccati type equations with super-critical exponents, Comm. Partial Differential Equations 35 (2010), 1958-1981 | MR | Zbl
,[34] Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl. 85 (2006), 465-492 | MR | Zbl
, ,[35] Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 385-387 | EuDML | Numdam | MR | Zbl
,[36] Regularity for a class of non-linear elliptic systems, Acta Math. 138 no. 3–4 (1977), 219-240 | MR | Zbl
,[37] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 no. 1 (1984), 126-150 | MR | Zbl
,[38] A potential theory approach to the equation , Ann. Acad. Sci. Fenn. Math. 35 (2010), 633-640 | MR | Zbl
,[39] On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369-410 | MR | Zbl
, ,[40] Quasilinear elliptic equations with signed measure data, Disc. Cont. Dyn. Systems 124 (2002), 369-410 | MR
, ,[41] Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math. vol. 120, Springer-Verlag, New York (1989) | MR | Zbl
,Cité par Sources :