We consider non-homogeneous degenerate and singular parabolic equations of the -Laplacian type and prove pointwise bounds for the spatial gradient of solutions in terms of intrinsic parabolic potentials of the given datum. In particular, the main estimate found reproduces in a sharp way the behavior of the Barenblatt (fundamental) solution when applied to the basic model case of the evolutionary -Laplacian equation with Dirac datum. Using these results as a starting point, we then give sufficient conditions to ensure that the gradient is continuous in terms of potentials; in turn these imply borderline cases of known parabolic results and the validity of well-known elliptic results whose extension to the parabolic case remained an open issue. As an intermediate result we prove the Hölder continuity of the gradient of solutions to possibly degenerate, homogeneous and quasilinear parabolic equations defined by general operators.
@article{ASNSP_2013_5_12_4_755_0, author = {Kuusi, Tuomo and Mingione, Giuseppe}, title = {Gradient regularity for nonlinear parabolic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {755--822}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {4}, year = {2013}, mrnumber = {3184569}, zbl = {1288.35145}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_4_755_0/} }
TY - JOUR AU - Kuusi, Tuomo AU - Mingione, Giuseppe TI - Gradient regularity for nonlinear parabolic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 755 EP - 822 VL - 12 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_4_755_0/ LA - en ID - ASNSP_2013_5_12_4_755_0 ER -
%0 Journal Article %A Kuusi, Tuomo %A Mingione, Giuseppe %T Gradient regularity for nonlinear parabolic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 755-822 %V 12 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_4_755_0/ %G en %F ASNSP_2013_5_12_4_755_0
Kuusi, Tuomo; Mingione, Giuseppe. Gradient regularity for nonlinear parabolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 4, pp. 755-822. http://www.numdam.org/item/ASNSP_2013_5_12_4_755_0/
[1] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), 285–320. | MR | Zbl
[2] G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 679–698. | MR | Zbl
[3] P. Baroni, Regularity in parabolic Dini-continuous systems, Forum Math. 23 (2011), 1281–1322. | MR | Zbl
[4] L. Boccardo, Elliptic and parabolic differential problems with measure data, Boll. Un. Mat. Ital. A (7) 11 (1997), 439–461. | MR | Zbl
[5] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149–169. | MR | Zbl
[6] L. Boccardo, A. Dall’Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), 237–258. | MR | Zbl
[7] G. Da Prato, Spazi e loro proprietà, Ann. Mat. Pura Appl. (4) 69 (1965), 383–392. | MR | Zbl
[8] E. DiBenedetto, local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850. | MR | Zbl
[9] E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), 487–535. | EuDML | Numdam | MR | Zbl
[10] E. DiBenedetto, Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations, Arch. Ration. Mech. Anal. 100 (1988), 129–147. | MR | Zbl
[11] E. DiBenedetto, “Degenerate Parabolic Equations”, Universitext, Springer-Verlag, New York, 1993. | MR | Zbl
[12] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1–22. | EuDML | MR | Zbl
[13] E. DiBenedetto, U. Gianazza and V. Vespri, Alternative forms of the Harnack inequality for non-negative solutions to certain degenerate and singular parabolic equations, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl. 20 (2009), 369–377. | MR | Zbl
[14] E. DiBenedetto, U. Gianazza and V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), 385–422. | Numdam | MR | Zbl
[15] F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math. 133 (2011), 1093–1149. | MR | Zbl
[16] F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal. 259 (2010), 2961–2998. | MR | Zbl
[17] F. Duzaar and G. Mingione, Gradient continuity estimates, Calc. Var. Partial Differerential Equations 39 (2010), 379–418. | MR | Zbl
[18] R. A. Hunt, On spaces, Einsegnement Math. (II) 12 (1966), 249–276. | MR | Zbl
[19] T. Kilpeläinen, Singular solutions to -Laplacian type equations, Ark. Mat. 37 (1999), 275–289. | MR | Zbl
[20] T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. | MR | Zbl
[21] J. Kinnunen and P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 59–78. | EuDML | Numdam | MR | Zbl
[22] J. Kinnunen and P. Lindqvist, Definition and properties of supersolutions to the porous medium equation, J. Reine Angew. Math. 618 (2008), 135–168. | MR | Zbl
[23] J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions, J. Funct. Anal. 258 (2010), 713–728. | MR | Zbl
[24] J. Kinnunen and M. Parviainen, Stability for degenerate parabolic equations, Adv. Calc. Var. 3 (2010), 29–48. | MR | Zbl
[25] R. Korte and T. Kuusi, A note on the Wolff potential estimate for solutions to elliptic equations involving measures, Adv. Calc. Var. 3 (2010), 99–113. | MR | Zbl
[26] T. Kuusi, Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), 673–716. | EuDML | Numdam | MR | Zbl
[27] T. Kuusi and G. Mingione, Potential estimates and gradient boundedness for nonlinear parabolic systems, Rev. Mat. Iberoam. 28 (2012), 535–576. | MR | Zbl
[28] T. Kuusi and G. Mingione, Nonlinear potential estimates in parabolic problems, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl. 22 (2011), 161–174. | MR | Zbl
[29] T. Kuusi and G. Mingione, A surprising linear type estimate for nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris 349 (2011), 889–892. | MR | Zbl
[30] T. Kuusi and G. Mingione, The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc. (JENS), to appear. | EuDML | MR | Zbl
[31] T. Kuusi and G. Mingione, New perturbation methods for nonlinear parabolic problems, J. Math. Pures Appl.(9) 98 (2012), 390–427. | MR | Zbl
[32] T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory, Arch. Ration. Mech. Anal. 207 (2013), 215–246. | MR | Zbl
[33] T. Kuusi and M. Parviainen, Existence for a degenerate Cauchy problem, Manuscripta Math. 128 (2009), 213–249. | MR | Zbl
[34] G. M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations, Nonlinear Anal. 14 (1990), 501–524. | MR | Zbl
[35] G. M. Lieberman, Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. Partial Differential Equations 18 (1993), 1191–1212. | MR | Zbl
[36] G. M. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific press, River Edge, 1996. | MR | Zbl
[37] P. Lindqvist, On the definition and properties of -superharmonic functions, J. Reine Angew. Math. 365 (1986), 67–79. | EuDML | MR | Zbl
[38] P. Lindqvist, Notes on the -Laplace equation, Univ. Jyväskylä, Report 102, 2006. | MR | Zbl
[39] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 195–261. | EuDML | Numdam | MR | Zbl
[40] G. Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571–627. | MR | Zbl
[41] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc. (JENS) 13 (2011), 459–486. | EuDML | MR | Zbl
[42] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. Corrections in: Comm. Pure Appl. Math. 20 (1967), 231–236. | MR | Zbl
[43] E. M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”. Princeton Math. Series, 43, Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
[44] E. M. Stein and G. Weiss, “Introduction to Fourier Analysis on Euclidean Spaces”, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ 1971. | MR | Zbl
[45] N. S. Trudinger and X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369–410. | MR | Zbl
[46] N. S.Trudinger and X. J. Wang, Quasilinear elliptic equations with signed measure data, Discrete Contin. Dyn. Syst. 23 (2009), 477–494. | MR | Zbl
[47] J. L. Vázquez, “Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Equations of Porous Medium Type”, Oxford Lecture Series in Math. Appl., 33. Oxford University Press, Oxford, 2006, xiv+234. | MR | Zbl