Summability of semicontinuous supersolutions to a quasilinear parabolic equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 59-78.

We study the so-called p-superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when p=2, we have supercaloric functions and the heat equation. We show that the p-superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.

Classification : 35K55
Kinnunen, Juha 1 ; Lindqvist, Peter 2

1 Department of Mathematical Sciences University of Oulu P.O. Box 3000 FI-90014 Oulu, Finland
2 Department of Mathematics Norwegian University of Science and Technology N-7491 Trondheim, Norway
@article{ASNSP_2005_5_4_1_59_0,
     author = {Kinnunen, Juha and Lindqvist, Peter},
     title = {Summability of semicontinuous supersolutions to a quasilinear parabolic equation},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {59--78},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {1},
     year = {2005},
     mrnumber = {2165403},
     zbl = {1107.35070},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_1_59_0/}
}
TY  - JOUR
AU  - Kinnunen, Juha
AU  - Lindqvist, Peter
TI  - Summability of semicontinuous supersolutions to a quasilinear parabolic equation
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 59
EP  - 78
VL  - 4
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2005_5_4_1_59_0/
LA  - en
ID  - ASNSP_2005_5_4_1_59_0
ER  - 
%0 Journal Article
%A Kinnunen, Juha
%A Lindqvist, Peter
%T Summability of semicontinuous supersolutions to a quasilinear parabolic equation
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 59-78
%V 4
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2005_5_4_1_59_0/
%G en
%F ASNSP_2005_5_4_1_59_0
Kinnunen, Juha; Lindqvist, Peter. Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 59-78. http://www.numdam.org/item/ASNSP_2005_5_4_1_59_0/

[1] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81-122. | MR | Zbl

[2] G. I. Barenblatt, On selfsimilar motions of compressible fluids in a porous medium (in Russian), Prikl. Mat. Mekh. 16 (1952), 679-698. | MR | Zbl

[3] E. Dibenedetto, “Degenerate Parabolic Equations”, Springer-Verlag, Berlin-Heidelberg-New York, 1993. | MR | Zbl

[4] E. Di Benedetto, J. M. Urbano and V. Vespri, Current issues on sigular and degenerate evolution equations, in: “Handbook of Differential Equations”, C. Dafermos and E. Feireisl (eds.) in press, Elsevier Publ. | Zbl

[5] P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), 699-717. | MR | Zbl

[6] J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) to appear. | MR

[7] T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM. J. Math. Anal. 27 (1996), 661-683. | MR | Zbl

[8] T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591-613. | Numdam | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov and N.N. Uraltseva, “Linear and Quasilinear Equations of Parabolic Type”, AMS, Providence R. I., 1968.

[10] P. Lindqvist, On the definition and properties of p-superharmonic functions, J. Reine Angew. Math. 365 (1986), 67-79. | MR | Zbl

[11] G. Lieberman, “Second Order Parabolic Equations”, World Scientific, Singapore, 1996. | MR | Zbl

[12] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. | MR | Zbl

[13] J. Moser, Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231-236. | MR | Zbl

[14] N. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. | MR | Zbl

[15] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. 33 (1976), 251-298. | MR | Zbl

[16] N. A. Watson, Corrigendum, Proc. London Math. Soc. 37 (1977), 32-34. | MR | Zbl

[17] Z. Wu, J. Zhao, J. Yin and H. Li, “Nonlinear Diffusion Equations”, World Scientific, Singapore, 2001. | MR | Zbl