To any -web of codimension one on a holomorphic -dimensional manifold (), we associate an analytic subset of . We call ordinary the webs for which has a dimension at most or is empty. This condition is generically satisfied, at least at the level of germs.
We prove that the rank of an ordinary -web has an upper-bound which, for , is strictly smaller than the bound proved by Chern, denoting the Castelnuovo’s number. This bound is optimal. Setting , let be the integer such that . The number is then equal
- to 0 for ,
- and to for .
Moreover, if is precisely equal to , we define off a holomorphic connection on a holomorphic bundle of rank , such that the set of Abelian relations off is isomorphic to the set of holomorphic sections of with vanishing covariant derivative: the curvature of this connection, which generalizes the Blaschke curvature, is then an obstruction for the rank of the web to reach the value .
When , is always empty so that any web is ordinary, , and any may be written : we recover the results given in [9].
@article{ASNSP_2012_5_11_1_197_0, author = {Cavalier, Vincent and Lehmann, Daniel}, title = {Ordinary holomorphic webs of codimension one}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {197--214}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {1}, year = {2012}, mrnumber = {2953049}, zbl = {1244.53014}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2012_5_11_1_197_0/} }
TY - JOUR AU - Cavalier, Vincent AU - Lehmann, Daniel TI - Ordinary holomorphic webs of codimension one JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 197 EP - 214 VL - 11 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2012_5_11_1_197_0/ LA - en ID - ASNSP_2012_5_11_1_197_0 ER -
%0 Journal Article %A Cavalier, Vincent %A Lehmann, Daniel %T Ordinary holomorphic webs of codimension one %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 197-214 %V 11 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2012_5_11_1_197_0/ %G en %F ASNSP_2012_5_11_1_197_0
Cavalier, Vincent; Lehmann, Daniel. Ordinary holomorphic webs of codimension one. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 197-214. http://www.numdam.org/item/ASNSP_2012_5_11_1_197_0/
[1] W. Blaschke and G. Bol, “Geometrie der Gewebe, Die Grundlehren der Mathematik”, Vol. 49, Springer, Berlin, 1938. | EuDML | JFM | MR | Zbl
[2] S. S. Chern, Abzählungen für Gewebe, Abh. Hamburg 11 (1936), 163–170. | MR | Zbl
[3] S. S. Chern and P. A. Griffiths, Abel’s theorem and webs, Jahresber. Deutsch. Math.-Verein. 80 (1978), 13–110 and 83 (1981), 78–83. | EuDML | MR | Zbl
[4] V. Cavalier and D. Lehmann, Ordinary holomorphic webs of codimension one, preprint, arXiv: math 0703596 v2[mathDS] 13 Oct. 2008. | Numdam | MR | Zbl
[5] V. Cavalier and D. Lehmann, Rang et courbure de Blaschke des tissus holomorphes réguliers de codimension un, C.R. Math. Acad. Sci. Paris 346 (2008), 1283–1288. | MR | Zbl
[6] V. Cavalier and D. Lehmann, Global structure of webs in codimension one, preprint, arXiv: math v1 [mathDS] March. 2008.
[7] V. Cavalier and D. Lehmann, Introduction à l’étude globale des tissus sur une surface holomorphe, Ann. Inst. Fourier (Grenoble) 57 (2007), 1095–1133. | EuDML | Numdam | MR | Zbl
[8] P. A. Griffiths and J. Harris, “Principles of Algebraic Geometry”, John Wiley & Sons, New York, 1978. | MR | Zbl
[9] A. Hénaut, On planar web geometry through Abelian relations and connections, Ann. of Math. 159 (2004), 425–445. | MR | Zbl
[10] A. Hénaut, Systèmes différentiels, nombre de Castelnuovo et rang des tissus de , Publ. Res. Inst. Math. Sci. 31 (1995), 703–720. | MR | Zbl
[11] A. Hénaut, Formes différentielles abéliennes, bornes de Castelnuovo et géométrie des tissus, Comment. Math. Helv. 79 (2004), 25–57. | MR | Zbl
[12] A. Hénaut, Planar web geometry through abelian relations and singularities, In: “Nankai Tracts in Mathematics” P. Griffiths (ed.), Vol. 11, World Scientific and Imperial College Press, 2006. | MR | Zbl
[13] A. Pantazi, Sur la détermination du rang d’un tissu plan, C.R. Inst. Sci. Roum. 2 (1938), 108–111. | Zbl
[14] J. V. Pereira, Algebrization of codimension one webs [after Trépreau, Hénaut, Pirio, Robert], Séminaire Bourbaki 2006-2007, n. 974, Mars 2007. | Numdam | MR | Zbl
[15] J. V. Pereira, Resonance webs of hyperplane arrangements, Adv. Stud. Pure Math. 99 (2010), 1–30. | MR | Zbl
[16] J. V. Pereira and L. Pirio, “An invitation to Web Geometry”, 27 Colóquio Brasileiro de Matemática, Publicaões matemáticas do IMPA, Instituto de matemática pura e aplicada, Rio de Janeiro, 2009. | MR | Zbl
[17] L. Pirio, Sur la linéarisation des tissus, preprint, arXiv: math 0811.1810v2 [mathDG] 23 janv. 2009. | MR | Zbl
[18] D. C. Spencer, “Selecta”, Vol. 3, World Scientific Publishing Co. Philadelphia, 1985. | MR | Zbl
[19] J. M. Trépreau, Algébrisation des tissus de codimension 1. La généralisation d’un théorème de Bol, Inspired by S. S. Chern, In: “Nankai Tracts in Mathematics”, P. Griffiths (ed.), Vol. 11, World Scientific and Imperial College Press, 2006. | MR | Zbl