Two solutions for a singular elliptic equation by variational methods
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 143-165.

We find two nontrivial solutions of the equation -Δu=(-1 u β +λu p )χ {u>0} in Ω with Dirichlet boundary condition, where 0<β<1 and 0<p<1. In the first approach we consider a sequence of ϵ-problems with 1/u β replaced by u q /(u+ϵ) q+β with 0<q<p<1. When the parameter λ>0 is large enough, we find two critical points of the corresponding ϵ-functional which, at the limit as ϵ0, give rise to two distinct nonnegative solutions of the original problem. Another approach is based on perturbations of the domain Ω, we then find a unique positive solution for λ large enough. We derive gradient estimates to guarantee convergence of approximate solutions u ϵ to a true solution u of the problem.

Publié le :
Classification : 34B16, 35J20, 35B65
Montenegro, Marcelo 1 ; Silva, Elves A. B. 2

1 Universidade Estadual de Campinas IMECC, Departamento de Matemática Rua Sergio Buarque de Holanda, 651 Campinas, SP, Brazil, CEP 13083-970
2 Universidade de Brasília Departamento de Matemática Brasília, DF, Brazil, CEP 70910-900
@article{ASNSP_2012_5_11_1_143_0,
     author = {Montenegro, Marcelo and Silva, Elves A. B.},
     title = {Two solutions for a singular elliptic equation~by variational methods},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {143--165},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {1},
     year = {2012},
     mrnumber = {2953046},
     zbl = {1241.35103},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2012_5_11_1_143_0/}
}
TY  - JOUR
AU  - Montenegro, Marcelo
AU  - Silva, Elves A. B.
TI  - Two solutions for a singular elliptic equation by variational methods
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 143
EP  - 165
VL  - 11
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2012_5_11_1_143_0/
LA  - en
ID  - ASNSP_2012_5_11_1_143_0
ER  - 
%0 Journal Article
%A Montenegro, Marcelo
%A Silva, Elves A. B.
%T Two solutions for a singular elliptic equation by variational methods
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 143-165
%V 11
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2012_5_11_1_143_0/
%G en
%F ASNSP_2012_5_11_1_143_0
Montenegro, Marcelo; Silva, Elves A. B. Two solutions for a singular elliptic equation by variational methods. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 143-165. http://www.numdam.org/item/ASNSP_2012_5_11_1_143_0/

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. | MR | Zbl

[2] H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math. 368 (1986), 63–107. | EuDML | MR | Zbl

[3] H. Brezis and M. Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217–237. | EuDML | Numdam | MR | Zbl

[4] A. Callegari and A. Nachman, Some singular nonlinear equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96–105. | MR | Zbl

[5] A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differential Equations 221 (2006), 210–223. | MR

[6] A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal. 11 (2004), 147–162. | MR | Zbl

[7] Y. S. Choi, A. C. Lazer and P. J. McKenna, Some remarks on a singular elliptic boundary value problem, Nonlinear Anal. 32 (1998), 305–314. | MR | Zbl

[8] Y. S. Choi and P. J. McKenna, A singular Gierer-Meinhardt system of elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 503–522. | EuDML | Numdam | MR | Zbl

[9] Y. S. Choi and P. J. McKenna, A singular Gierer-Meinhardt system of elliptic equations: the classical case, Nonlinear Anal. 55 (2003), 521–541. | MR | Zbl

[10] F. Cîrstea, M. Ghergu and V. Radulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problem of Lane-Emden-Fowler type, J. Math. Pures Appl. 84 (2005), 493–508. | MR | Zbl

[11] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222. | MR | Zbl

[12] J. Dávila, Global regularity for a singular equation and local H 1 minimizers of a nondifferentiable functional, Commun. Contemp. Math. 6 (2004), 165–193. | MR | Zbl

[13] J. Dávila and M. Montenegro, Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math. 90 (2003), 303–335. | MR | Zbl

[14] J. Dávila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation, Trans. Amer. Math. Soc. 357 (2005), 1801–1828. | MR | Zbl

[15] J. Dávila and M. Montenegro, Radial solutions of an elliptic equation with singular nonlinearity, J. Math. Anal. Appl. 352 (2009), 360–379. | MR | Zbl

[16] J. I. Diaz, J. M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333–1344. | MR | Zbl

[17] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka Math. J. 12 (1960), 1–19. | MR | Zbl

[18] N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations 9 (2004), 197–220. | MR

[19] Y. M. Long, Y. J. Sun and S. P. Wu, Combined effects to singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations 176 (2003), 511–531. | MR | Zbl

[20] A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275–281. | MR | Zbl

[21] T. Ouyang, J. Shi and M. Yao, Exact multiplicity and bifurcation of solutions of a singular equation, preprint.

[22] K. Perera and E. A. B. Silva, Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl. 323 (2006), 1238–1252. | MR | Zbl

[23] K. Perera and E. A. B. Silva, On singular p-Laplacian problems, Differential Integral Equations 20 (2007), 105–120. | MR | Zbl

[24] D. Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J. 32 (1983), 1–17. | MR | Zbl

[25] D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem, Comm. Partial Differential Equations 8 (1983), 1409–1454. | MR | Zbl

[26] P. H. Rabinowitz, “Minimax Methods in Critical Point Theory with Applications to Differential Equations”, CBMS Regional Conference Series Math., Vol. 65, Amer. Math. Soc., Providence, 1986. | MR | Zbl

[27] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1389–1401. | MR | Zbl